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TRANSMISSION OF SOUND AND VIBRATION

TO A SHROUD-ENCLOSED SPACECRAFT

By: T _ E. Manning, Richard H. Lyon,u ero,,,e

a d Terry D. Scharton

ABSTRACT

An analytical approach toward predicting the flow of vibratory

energy to a shroud-enclosed spacecraft is presented. In the

approach, two paths of energy flow are considered: first, the

acoustical path along which energy flows from the external ex-

citing field through the shroud and interior acoustic space to

the spacecraft; and second, the mechanical path along which energy

flows from the external field through the shroud and spacecraft

mounting-trusses to the spacecraft. Theoretically predicted re-

sponse levels in octave frequency bands for a model of the 0G0

spacecraft assembly are presented. These predictions show that

the spacecraft response to energy transmitted along the acoustic

path is a factor of ten to one hundred greater than the response

due to energy transmitted along the mechanical path over the

frequency range, 250 to 8000 Hz.

xvii



I. INTRODUCTION

The goal of the studies reported here has been the develop-

ment of an analytical procedure for predicting the mechanical

and acoustic excitation environment of a shroud-enclosed space-

craft. An estimation procedure k_own as statistical energy

analysis is described. This estimation procedure is applicable

to prediction of the vibration environment of any spacecraft-

shroud assembly. To illustrate the procedure, we have focused

our attention on prediction of the vibration environment for

a class of spacecraft-shroud assemblies that are similar to

the OGO spacecraft assembly. The basic spacecraft structure

for this class of assemblies is an array of panels that are

supported by a series of trusses. The trusses are connected

to a ring frame that is, in turn, connected to the shroud. The

predictions in this report give spectral acceleration levels

on the spacecraft panels in terms of the gross structural pro-

perties of the assembly. Fine details of the assembly, such as

the exact details of the shroud/ring-frame/mounting-truss

connection, are not needed for the predictions. As a further

example of the predictions, numerical results are obtained for

a model of the OGO spacecraft. These results show that, for

this particular assembly, the dominant excitation of the space-

craft is by energy transmitted from the exterior sound field

through the interior acoustic space; the excitation by energy

transmitted along the mounting trusses is of lesser signifi-

cance. With certain reservations, we can regard this result

as fairly general for the class of spacecraft assemblies con-

sidered here.

The major limitation of the prediction method is that it is

applicable only at high frequencies in which many modes of each



structure are resonant in each octave band. For the 0G0 assembly

and other assemblies of similar size, the lower-frequency limit

of the predictions is approximately 200 Hz. Another limitation

of the prediction method is that it requires knowledge of the
dam_ing properties of the structural and acoustic elements in

the assembly. In this report, we do not present an analytical
method for predicting the damping of the structures. Rather, we

have used empirical relationships of which we are reasonably

confident. We expect that the dissipation-loss factors predicted

by these empirical relationships will be within a factor of 5

of the true dissipation-loss factor for the structure.

Our model of the spacecraft-assembly is briefly described in

the following sections of this chapter. In addition, we give

brief descriptions of the environment considered in the analysis

and the prediction scheme itself. In Chapter II, the prediction

scheme is discussed in greater detail. The power-balance

equations that are used in the analysis are derived from a basic

result for two coupled oscillations. In Chapter III, we predict

the environment due to energy transmitted by the acoustic space.

Similarly, in Chapter IV, we predict the environment due to

energy transmitted by the mounting trusses. The organization of

Chapter III parallels that of Chapter IV. First, the model is

described. Then, using the results of Chapter II, power-balance

equations for the model are obtained. Next, the necessary

parameters are derived in terms of the basic structural pro-

perties of the system. The spectral response of each element in

the assembly is obtained in terms of their structural and
acoustic properties. Finally, numerical results are obtained

for a model of the OG0 spacecraft.

2



In Chapter V, the predictions of the previous two chapters

are combined. This gives the over-all spacecraft-panel

environment due to acoustically and structurally transmitted

energy. In Chapter V!, we discuss the conclusions that can be

obtained from this study. Appendix A of this report describes

an experimental study that could be conducted to complement

the analytical prediction. A list of parameters that are

appropriate for the OGOassembly are given in Table I.

i.I Description of a Model that Retains the Vibrational

Response and Transmission Properties

of the OGOSpacecraft-Shroud Assembly

The estimation procedures described in this report could

be used for any spacecraft-shroud assembly. To help fix our

ideas, however, we will make reference to the structure shown

in Fig. I. This structure is an idealized model of the OGO

spacecraft-shroud assembly. In this model, the shroud is a rib-

stiffened cylindrical shell. The base of the shroud attaches

to a mounting ring frame which provides the principal support
for the spacecraft. The spacecraft proper is attached to the

ring frame by a series of mounting trusses. The actual OGO

spacecraft is a complicated aggregation of solar panels,

antennas, center-of-gravity control rods, jets, instruments,

etc. We have simplified it to be simply a rectangular box of

flat panels.

The mechanical descriptors of these major segments will be

put in a form that is as general as possible, to allow for
different kinds of construction. One-dimensional structures such

3



as ribs, ring frames, and trusses are described in terms of lineal

density (mass per unit length), radii of gyration for bending and

torsional motion, radius of curvature, and over-all length.

Panellike structures such as the shroud and the spacecraft box

are described by surface density (mass per unit area), radius of

gyration for bending, and over-all dimensions, including radius

of curvature. The elastic properties of the elements are

described by Young's modulus or by the longitudinal wavespeed.

1.2 Definition of the Environment Considered in the Analysis

The highest pressure load sustained by the shroud is achieved

during the launch and the maximum q phases of the flight. During

the launch, excitation is due to the sound waves that are

generated by the turbulent exhaust impinging on the shroud from

below. During periods of high dynamic pressure, excitation is

due to convected turbulent pressure fluctuations that arise in

the boundary layer of the flow about the shroud.

In a sound field, there is a distinct relationship between

frequency (f) and wavelength (_) scales-that is governed by the

speed of propagation, i.e.,

= Co, (i)

where c is the speed of sound. In turbulent flow, by
o

contrast, there is no specific relationship between frequency

and wavelength, and, in fact, a particular wavelength of

pressure disturbance may have a complete spectrum of ex-

citation frequencies. The result of this distinction is that a

pressure spectrum measured at the surface of the shroud may

give rise to two completely different mechanical-vibration-



response spectra, depending on whether the pressure field is
due to sound or a turbulent boundary layer. The relative

efficiencies of sound fields and turbulent flow in producing
mechanical excitation has been discussed in Refs. I and 2.

If one knows the mechanical power absorbed from the

environment by groups of modes that are similarly coupled to the

interior acoustic field, then the analyses developed in this

report will apply equally well, whether that power is due to

aerodynamic or acoustic excitations. For the purposes of

calculating the power absorbed by each group of modes, however,
we shall assume that the exterior field is a reverberent sound

field. This means that there is equal probability for acoustic

energy to be incident from all angles. As we shall see, this

has a particularly simple interpretation theoretically, and

represents a relatively easy condition to achieve experimentally.

If the signal is filtered into narrow frequency bands, the

spatial crosscorrelation pattern for such a field is isotropic

and has the form shown in Fig. 2, where _ is the acoustic wave-
length at the center frequency of the band. 3

1.3 A Brief Description of The Prediction Scheme

An examination of Fig. I will show that there are two primary

paths along which energy can be transferred to the spacecraft

structure. One of these is an acoustic path through the interior
volume of the shroud and by acoustic transduction into the space-

craft panels. The second is a mechanical path through the mount-

ing truss and into the base of the spacecraft. Figure 3 shows the
major elements involved in the transmission of energy from the

shroud to the spacecraft. One of the goals of this study is to

assess the relative importance of the acoustic and the mechanical

5



excitation. Thus, we shall treat these paths separately in the

prediction calculations.

In addition to this separation into transmission paths, we

also make a distinction between energy transferred by "resonant"

and "nonresonant" motions. If we consider a specific frequency

band, then, by resonant transmission, we mean energy transferred

by vibrational modes of the connecting system that resonate in

this band. By nonresonant transmission, we mean energy

transferred in that frequency band by the motion of modes of the

connecting system that are resonant outside of that frequency

interval.

The standard calculations of sound transmission by building

walls are usually based on a "mass-law" nonresonant behavior of

the walls. This is because, in a wall, modes that are well-

coupled to a sound field (their wavelength is longer than the

acoustic wavelength) are excited by a sound wave at frequencies

above their natural resonances. Therefore, they respond in a

mass-controlled nonresonant fashion. The collective motion of

such modes gives a fairly large amount of sound transmission,

even though the amplitudes of the wall motion may be quite small.

In contrast, although there can be considerable wall motion due

to modes that resonate in the test frequency band, the con-

tribution of these modes to the sound transmission is small,

since they are usually inefficient sound radiators.

In space vehicles where the structures are lightweight and

flexurally stiff and there is a small distance between support-

ing frames and stringers, the amount of acoustic energy trans-

mitted by the resonant motions is increased in comparison with

the amount transmitted by nonresonant motion. Energy trans-

6



mission in such systems is, therefore, a competition between

resonant modes that respond with large amplitudes but are

inefficient in transferring acoustic energy and nonresonant

modes that have small response _i_*-_ but are efficient

acoustic-energy-transfer agents. The analysis developed in

this report considers both types of energy transfer and attempts

to assess the relative role of each.

The basic approach that we use to develop the prediction

methods is that of statistical energy analysis 4. This

approach, which is outlined in the following chapter, treats a

complex system as a set of modes that are coupled together more

or less intimately, depending on the structural configuration.

The motion of each section or element of the structure is

determined by the energy of the modes that describe its motion.

In this sense, the response of acoustical and mechanical

elements is described by precisely the same type of variable.

A basic result of statistical energy analysis allows us to

predict power transfer between sets of modes that are excited

to unequal energies in the same frequency band. Using the laws

of energy transfer, it is then possible to build up a fairly

simple prediction of the average energy distribution in a complex

system. If more information than the expected mean value of

vibration is desired, then it is possible to build up estimates

of variance and construct confidence coefficients for "estimation

intervals." Unfortunately, however, variance calculations become

very complex for transmission problems, and it will not be

feasible to develop them for the present application.

7
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2. AN OUTLINE OF STATISTICAL ENERGY ANALYSIS

In this chapter, we discuss the main ideas or concepts of

the statistical energy analysis of vibration response and trans-

mission. A complete recapitulation of all the theoretical de-

velopments and applications that have been made of this type

of analysis is not possible or desirable in this report. The

reader is referred to Ref. 4 for a more complete discussion. It

is possible, nevertheless, to outline the main results in such

a way as to give an appreciation of the role that various com-

ponents play in the calculations, and the way in which the pre-

sent application is related to other applications in the

literature.

2.1 A Fundamental Observation on Power Flow

Between Two Oscillators Excited by Wide-Band Noise

Statistical energy analysis is useful because of a funda-

mental observation on the energetics of two coupled linear

oscillators excited by wide-band* random-noise sources. If one

calculates the time-average power flow between these two

oscillators, one finds that it is proportional to the difference

in their time-average total energiesS, and that the power flow

is always from the oscillator of higher energy to that of lower
6

energy. This result was first established by Lyon and Maidanik,

for the case of oscillators with small linear coupling and

damping. Recently, Scharton 7 has shown that this result i_

independent of the strength of the coupling between oscillators

if their energies are suitably defined.

*By wide-band noise, we mean noise with a spectrum that en-
compasses the resonance frequencies of both oscillators.

9



For example, let us consider the pair of stiffness coupled

oscillators shown in Fig. 4. The time-average total energy of

oscillator A is defined as

ZA = 12 MA <vA2>t + i (KI + Kc ) <9[A> (2)

and the time-average total energy of oscillator B is

I I <X2> ._B _MB<vB2>t +_ (K2 +K c) (3)

The referenced analyses predict that the time-average net power

flow hAB is given by

hAB - CAB(SA - _B) • (4)

where the coupling factor CAB is given in terms of parameters of

the two oscillators and is Independent of the source strengths:

2
K
C

_AB =-

KAKB

_A2_B2(_A_A-_<_B_B)

(c) A 2 -_B 2 ) 2+ ( _A _lA+_B _B ) ( _A C_B2rl A-_<nB_A2_ B )

(5)

where

2 _ KA+Kc 2 _  +Kc
C°A : ' mB -

MA

I0



and

We note from Eq. (5) that the coupling factor ¢AB is positive

definite, so that the power HAB always flows from the oscillator

of higher average energy to the oscillator of lower average

energy. We note also that the coupling factor has a maximum

value when the resonance frequencies [defined in Eq. (5)] of

the two oscillators coincide. Let us now suppose that oscillator

A is excited by an external wide-band noise source but that

oscillator B is excited only through its connection to oscillator

A. In this event, the dissipated power in oscillator B must

equal the power that flows to it from oscillator A. The power

dissipated by oscillator B is given by

nBdiss = %nB B . (6)

Equating relations (4) and (6) results, then, in an expression

for the time-average total energy ratio of the two oscillators,

8B CAB
(7)

This particular result is appropriate only for the case

where two oscillators are coupled together. In the following

sections of this chapter, we will consider power balance

equations for more-complex multimodal systems.
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2.2 Power Flow in Multimodal Systems Excited by Wide-Band Noise

Armed with our fundamental result on the time-average power

flow between two coupled oscillators excited by wide-band noise,

let us now consider the system diagrammed in Fig. 5. This system

is divided into two subsystems, each of which has several modes

of oscillation and is excited by wide-band noise sources. The

attachments between the subsystems correspond to the coupling

spring K c in Fig. 4, and result in a power flow between the modes

of vibration of subsystem n and subsystem n+l.

The modes of each subsystem can be treated as a set of

coupled oscillators. Based on the results when only two

oscillators are coupled together, we hypothesize that the power

flow between any two of the coupled oscillators in subsystem n

and n+l is proportional to the difference in their time-average

total energies. Then, the power transferred from subsystem n

to subsystem n÷l can be given as

_n,n+l = 7. Z CAB(8A-8B) " (8)

A B

where summation over A refers to a summation over all modes in

subsystem n, summation over B refers to a summation over all

modes in subsystem n+l, and @AB is the coupling factor between

mode A and mode B.

We will assume that the subsystems are so chosen that one

of the following conditions holds:

ao the coupling factors between modes are all

equal,
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be modes within the same subsystem have the

same time-average total energy,

C , the time-average total energy of a mode

is independent of its coupling to any

particular mode in the other subsystem.

In a practical application of statistical energy analysis,

the above conditions are usually not satisfied exactly. However,

in most cases, the modes of a system can be divided such that

all of the above conditions are approximately satisfied. The

need for and significance of the assumption that one of the

above conditions hold is discussed further in Ref. 4.

If one of the above conditions is valid, then the mode-to-

mode coupling factors in Eq. (8) can be replaced by an average

coupling factor between a mode in n and a mode in n÷l. The

indicated summation can now be carried out to give

JHn n+l = ¢--n,n+l Nn+l Nn - En+l ' (9)
, Nn+ I

where __,n+l is the average mode-to-mode coupling factor be-

tween the two subsystems, E is the total time-average
n

energy of a subsystem n, and Nn is the number of modes in

subsystem n.
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Up to this point, we have restricted our discussion to

systems excited by wide-band noise. In the calculations to

follow, however, we wish to find the vibrational response of the

structural elements in bands of frequency. Toward this end, we

will consider, in the next section, power flow in a multimodal

system excited by a band of noise. As it turns out, the basic

calculations of time-average power flow between two groups of

modes excited by wide-band noise can still be used to advantage.

2.3 Power Flow in Multimodal Systems

Excited by a Band of Noise

Let us consider a multimodal system excited in a band of

frequencies. We can divide the modes of this system into resonant

and nonresonant modes according to whether or not their resonance

frequencies are within the band of excitation. We can further

divide the modes into groups of modes which are similarly coupled

to modes in other groups. The power flow between two groups of

similarly coupled resonant modes can be given by Eq. (9), since

the excitation band encompasses the resonance frequencies of the

modes within these groups. The power-flow interactions with

groups of nonresonant modes, however, cannot be predicted by the

results of the last two sections, since the resonance frequencies

of these modes lie outside the band of excitation.

Power flow between resonant and nonresonant modes is

generally not proportional to modal energy dlfference.

Fortunately, the response and energy transmission of nonresonant

modes can usually be calculated by more-classical vibrational

analyses. For example, the response and energy transmission of

nonresonant modes in a panel excited by an acoustic field are

14



given by the so-called "mass law".8 In the formulation to

follow, we assume that the nonresonant response and power-flow

interactions are known.

Let us consider the system diagrammed in Fig. 6. This

system is excited by a band of noise and has accordingly been

divided into groups of resonant modes and groups of nonresonant

modes. We assume that the modes within each group are

similarly coupled to modes in other groups.

If the vibration of this system has reached a time-average

equilibrium level, then in the band of excitation we can

identify an amount of power received by the nth group from the

environment, denoted _n in. We can also identify the power

diss
dissipated, _n , the power flow to the other groups of

resonant modes, _n,n-i and _n,n+l' and the power flow to the

NR NR

nonresonant groups of modes, En,m_ I and Hn,m+l " Since

the modes are at equilibrium, a power-balance equation for

the nth group of modes is

in _n,n+l + _n,n-i + _ diss + _ NR NR (I0)_n = n n,m-I + _n,m_l "

The power dissipated in the frequency band of excitation

by the nth group of resonant modes is classically given in

terms of a dissipation or internal loss factor _n:
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diss

_n = m_n En" (ll)

where _ is the center frequency of the excitation band and E
n

is the time-average kinetic energy in the nth group. For con-

sistency with the dissipation loss factor when En+ 1 approaches

zero, we define a coupling loss factor qn,n+l by

En En+l ] (12)
Hn,n+l = _n,n+l Nn N n Nn+ ! '

where N is the number of modes in the nth group. Comparison of
n

this equation with Eq. (9) indicates that the coupling loss

factor is related to the average mode-to-mode coupling factor

by the equation

a)qn,n+l = -@n,n+l Nn+l " (13)

For a general system, we do not know the exact number

of modes in each resonant group. However, it turns out that we

can arrive at a reasonably good estimate from the modal density.

Modal density is defined as the limit, as the bandwidth approaches

zero, of the expected number of modes that occur in a given

frequency band divided by the bandwidth:

n(f) = lim. N(f+A) - N(.f).., (14)

A--_0 A
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where n(f) is the modal density, N(f) is the average number

of modes with resonance frequencies below f in an ensemble

of systems, and A is the bandwidth. Quantitatively, the

modal density is the number of modes per unit frequency,

although of course that number may be considerably less

than unity.

For our calculations we will find it convenient to use

the average modal density over a band of frequencies. This

average density is defined as

n(f) --
A

so that the number of modes of the nth group in the frequency

band & is simply

N n - n--n(f)A . (16)

The power-balance equation, Eq. (I0), can now be ex-

pressed in terms of the loss factors, modal densities, and

time-average total energy of each group of modes, through

Eqs. (II), (12), and (16):
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in
F.
n = _qn, n+l %A[E--q n En+----!]

_n A nn+iA

]+ o_q . _ A n En-___!

--A h IAn,n-± n nn

NR NR (17)
+ o-_]n En + fin,m_ I + fin,m+ I •

where A is the bandwidth of the frequency band being considered.

Similar power-balance equations can be obtained for the other

groups of resonant modes. These, together with Eq. (17), form

a set of linear equations that can be solved for the energy of

the resonant modal groups in terms of the power flows from the

environment and the nonresonant modal groups, the loss factors,

and the modal densities. We assume that the needed power flows

can be calculated by classical methods.* It remains, then, to

find the loss factors and modal densities. These must be either

calculated or estimated on the basis of experiment. In this

report, we shall use the former approach. However, equally valid

experimental methods are described in Appendix A.

* In Sections 3.5 and 4.5, this will be found to be a valid

assumption for the problem that we are considering.
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2.4 Calculation of Loss Factors and Modal Densities

In this section, we deal with the procedures for calcu-

lating the coupling loss factors, dissipation loss factors, and

modal densities.

Two different approaches are possible in the calculation

of a coupling loss factor. The first approach can be used

when the "uncoupled systems" are well defined, with calculable

normal modes of vibration. Then one can consider the system

coupling to be a series of mode-by-mode interactions. This

approach reduces the system to modal interactions of the type

shown in Fig. 4. In such a system, it is possible to obtain

the modal-coupling loss factor by direct computation. The

interactions between groups of resonant modes can then be

computed and statistical averages of these interactions can be

performed. Such an approach was the basis for the calculations

in Ref. 9, and it has been used to compute the interaction

between a simple linear oscillator and a vibrating plate in

Ref. I0.

A second approach was suggested by the calculations in

Ref. I0, which showed that the averase power flow between

the mass-spring oscillator and a random ensemble of plates was

the same as that between the oscillator and an infinite plate.

The generation of average interactions by the consideration of

infinitely extended systems has also been utilized and was

employed in the calculation of the coupling factors between

beams and plates and between connected plates, in Refs. I0 and

!I. The equivalence between the average interaction of finite

systems (where one takes the average by assuming that the

resonant frequencies of the modes are equally probable over some

frequency interval) and the interaction of infinite systems has
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been demonstrated in a few particular instances and has a strong

intuitive appeal, but it has not yet been given the solid

analytical foundation that would establish it as a general

theorem. It is, nevertheless, the approach that we shall take

for the calculations in this study.

In using the second approach, we imagine that a mechanical

wave in one of the two connected systems is incident on the

Junction between them. The amount of power that flows to the

second system is computed by imagining that the junction is

severed and establishing and "unloaded" motion of the Junction

point. This motion then acts as a source of power transfer

through the "internal impedance" of the exciting system into a

"load impedance" of the second system. For this particular

direction and type of wave incidence on the junction, the power

flow is expressible in terms of a ratio of two impedances of the

incident system. This approach is particularly valuable, since

many of these impedances have been previously calculated and

tabulated. 29 One can then average over directions of incidence

of the wave (where this is appropriate) and calculate an average

power flow between the systems. The intensity of the incident

wave establishes the strength of the "reverberant field" in the

exciting system.

The dissipation loss factors cannot be calculated theo-

retically at the present time. However, an empirical estimate

of these factors based on a number of past experimental and

field results can be made. In the absence of any experimental

evidence, these estimates can be used, but of course with some

uncertainty.
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It has long been known that one does not need to calculate
the modes of a system in detail in order to achieve useful

expressions for the modal density at high frequencies. A well-
.k_nowntheorem by Wey112 shows that at sufficiently high

frequencies, the modal density of three-dimensional spaces

depends only on the total volume of the space and that the modal

density of two-dimensional spaces depends only on the area.

These asymptotic results have long been used in the theory of

specific heats of crystals and in calculating the modal density
of acoustic spaces. They imply that one can find the modal

density of an irregularly shaped plate by computing the modal

resonance frequencies of a simply supported plate having the
same area. The detailed boundary conditions are important in

establishing the precise resonance frequencies, but the average
frequency separation of the modes depends only on the total

area of the plate. Similarly, the modal density of truss systems

can be found by computing the modal resonance frequencies and

their distribution in a simply supported beam having the same
total length as the truss system. We shall make use of

specific examples of such calculations in later sections of

this report.

In addition to implying an ease of calculation of modal

density, Weyl's results also suggest that the modal density

of combined systems--e.g., a beam that can carry flexural and

torsional waves simultaneously--can be calculated simply by

adding the modal densities of each component of the system or

of the motion. This is true because, if modal density is
proportional to volume, then the modal density of two volumes

is simply the modal density of the combined volume or,

equivalently, the sum of the modal densities of the component
systems.
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The concept behind the simple asymptotic approach has been
used to calculate the modal density for beams, plates, and

cylindrical shells. In all cases where the experiment has been
able to count effectively the modes of vibration, the simple

asymptotic formulas have been shown to be surprisingly accurate.

2.5 Review of Assumptions Made in Statistical Energy Analysis

Before we proceed with specific calculations of the energy

transmission in the spacecraft-shroud assembly, it is perhaps
wise to review some of the assumptions that are to be made in the

analysis.

Most of the assumptions that we mention here are the result

of our selection of statistical energy analysis as a means of

calculation. Other assumptions are made for the convenience of

specific calculations and applications; these, however, are dis-

cussed as they occur.

The first major underlying assumptions that we make are

(a) that the motion of the structural systems is linear, and

(b) that the coupling between the structural elements and with
acoustic fields is also linear. It is not anticipated that

significant nonlinear effects will occur at the levels encounter-

ed in the 0G0 system, although sound levels in some of the larger

booster-spacecraft systems are approaching a point where non-
linear effects can be expected.

The basic calculations of statistical energy analysis assume

that the systems are driven by independent random noise sources
with an excitation spectrum uniform at least over the bandwidth

of the individual modes. As a practical matter, this means that
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the excitation acoustic spectrum must be reasonably smooth,

without discontinuities or spikes that occur within the band-

width of a mode. In some special applications, particularly

where the modal density is quite high, statistical energy

analysis will provide good estimates of response even when the

excitation is a single frequency (pure tone). We do not,

however, have that condition in the OGOspacecraft-shroud

assembly and shall not assume that the calculations that

we obtain are in fact applicable to the pure-tone case.

Another major assumption in our analysis is that each
mode of a subsystem in a prescribed frequency band (octave,

one-third octave, or other) has the same coupling to the modes

of the other subsystems or the same modal time-average

energy as the other modes in the subsystem. In cases where

there is a large discrepancy between the coupling or modal

energy between two classes of modes in the same structural
element, one has to form subsystems for each class of modes.

This was done in Ref. Ii, for example, when the power trans-

fer by torsional and bending motion of a beam was considered

for each type of motion independently, and the total power
transfer was obtained as the summed effect of these two classes

of modes. The formation of subsystems for two classes of modes

will be necessary for our analysis of the shroud acoustic
transmission.

The calculation that one usually makes with statlstiDal

energy analysis is the power transfer between a set of modes

of one system and a set of modes of a second system in a pre-

scribed frequency interval. It is assumed that a useful

statistic of this interaction is the average power flow when

the resonant frequencies of the modes are allowed to vary
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uniformly over the band. The usefulness of such a calculation

can frequently be assessed by calculating the standard deviation

of the power flow as the resonance frequencies are varied. When

the number of modes in the interacting sets are high, then this

variance is small and the average calculation gives a good

estimate of the power flow at any set of resonance frequency

locations. When the number of modes in each set is relatively

low, then the variance can be high and an average estimate in

itself may have relatively little utility. The variance calcu-

lation can be useful in this case, however, in estimating how

much change one is likely to find in the energy transfer when

slight changes are made in a system and the resonant frequencies

of modes are altered.
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3. ANALYSIS OF THE ACOUSTIC TRANSMISSION PATH

In this chapter, the transmission of vibratory energy

along the acoustic path is formulated in terms of basic

structural and acoustic parameters of the spacecraft-shroud

assembly. Where useful, specific calculations are made, using

parameter values that are appropriate for a model of the 0G0

spacecraft. These values are listed in Table I.

The elements of the acoustic transmission path are indicated

in Fig. 3. A necessary step in our analysis is the replacement

of these elements in the actual spacecraft-shroud assembly by

idealized models. In selecting models, we have been guided by

two basic considerations. First, we have tried to pick models

that are idealized enough to be analyzed, but still retain the

acoustic response and transmission characteristics representative

of the actual spacecraft elements. Second, we have tried to

pick models that can be easily constructed, so that our

theoretical analysis can be checked experimentally. The models

we have selected are described in the following paragraphs.

3.1 Detailed Description of the Acoustic Path Elements

As a model of the exterior acoustic field, element I in

Fig. 3, we select a diffuse reverberant field of noise which

can be described by a mean-square sound-pressure spectral

density, 13 S t_l_(f). The acoustic space containing this field
P

has a volume V I and contains air with density Po" speed of sound

c and zero mean velocity relative to the missile The volume
O'

of the acoustic space will cancel out of the calculations and

therefore is arbitrary for our theoretical analysis.
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In an actual flight, we would expect that the noise imping-

ing on the shroud would be more intense at axially grazing and

near-grazlng angles of incidence. Franken and Lyon 14 have

studied the differences in the coupling between a diffuse noise

field and the Titan missile skin, and between an axially weighted

noise field and the missile skin. Their analysis showed less

than I dB difference in the coupling loss factor for the two

cases, except at the first few modes of the skin, where a 5 dB

difference occurred. A similar analysis could be made for our

model of the spacecraft shroud. In such an analysis, the coupling

between each mode of the shroud and the sound field must be

calculated separately. 15 Although a detailed analysis of this

type is beyond the scope of this report, we have estimated the

differences between the coupling of the shroud to a diffuse and

a nondiffuse sound field. For most frequencies, the difference

in the coupling loss factors for the two types of field is less

than I dB. Near the ring frequency a difference of around 3 dB

occurs. These differences in coupling loss factor, however,

have less than I dB effect on the noise transmission through our

model of the shroud. Since the diffuse reverberant field is

easily simulated experimentally in a large room, it is a better

model of the exciting noise field for our purposes than the

axially weighted field.

In analyzing the acoustic response and transmission

characteristics of the shroud, element 2, we model it by a

ring-framed thin-walled cylindrical shell of radius a2 and

length _2" The ring frames are separated by distances _2a'

_2b' _2c' etc. The structural properties of the shell wall

are described, sufficiently for our analysis, by a longitudinal
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(2)
wavespeed c_ , a bending radius of gyration* _2' and a

surface density ps (2). We assume for our analysis_, that the

compresslonal wavespeed is independent of frequency and that

the radius of gyration is independent of the direction of

bending.

The wall of the actual shroud may be inhomogeneous. In

this case, the model described will be a valid representation

for frequencies at which the free-bending wavelength is longer

than the spacing between inhomogeneities. The actual shroud

wall may also be nonisotropic. In such a case, two isotropic

models can be used as limiting cases. The first model has a

bending stiffness equal to the maximum bending stiffness of the

nonisotropic wall, while the second has a stiffness equal to

its minimum bending stiffness. If the maximum and minimum wall

stiffnesses are less than a factor of two apart, the two limit-

ing estimates will not differ greatly.

The structural properties of the ring frames and the

shell end conditions are not critically important to our

ana!ysis. 0nly the over-all length of the frames must be

known. The ends of the cylindrical shell model are taken to be

closed by baffles that do not transmit acoustic energy and are

structurally isolated from the shell.

* We mean here a bending radius of gyration that does not take

into account the wall curvature, i.e., the bending stiffness
_n a flattened section of the shell wall.
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An actual shroud is terminated on one end by a conical cap

and on the other end by a structural bulkhead separating the

spacecraft compartment from the interior of the launch vehicle.

The acoustic acceptance and transmission properties of a conical

structure are not completely understood. We assume that they can

be represented sufficiently for our analysis by replacing the

conical structure by a cylindrical extension to the shroud model

with an area equal to that of the conical structure.

We further assume for our analysis that no vibratory energy

is exchanged between the launch-vehicle structural members and

the shroud-spacecraft assembly. For a particular case in which

such energy exchange is important, the analysis of this report

could be extended.

The interior of the shroud model is taken to be lined with

a lightweight, acoustically absorptive material. The surface

density and bending stiffness of this material are negligible

as compared with those of the shell wall, so that the shell

vibrational behavior is unaffected. We also take the thickness

of the liner to be sufficiently thin so that radiative properties

of the shell are not significantly changed. The effect of the

liner on the absorption of the interior space has been included.

The interior acoustic space, element 3 in Fig. 3, has a very

complicated geometry. It is sufficiently defined for our purposes

by the speed of sound in the media Co, the volume density Po' the

free volume V 3, and an absorption coefficient _3" The absorption

coefficient _3 accounts for losses in the acoustic space and

into the shroud acoustic liner. It does not account for losses

due to transmission of acoustic energy through the shroud or in

the spacecraft. We assume that the absorption coefficient of the
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interior acoustic space is small enough, _3 < 0.3, that the

interior sound field is reverberant.

The liner in the actual OG0 assembly is a 1/2- to 1-in.-

thick, 3.5 Ib/cu ft microquartz felt thermal blanket that

covers approximately one-half of the surface area of the

shroud. The acoustical properties of this material were not

readily available for this project. However, we were able to

obtain a small sample of the material and make an approximate

experimental estimate of the absorption coefficient. This

estimation is discussed in more detail in Section 3.4.6.

Finally, we model the spacecraft, element 4 of Fig. 3,

by a rectangular open box of four flat panels. The box is

sufficiently defined by its surface area AS, and the length

of its connected edges LS. The panels are defined by a

bending radius of gyration _4' and a surface mass density

(4)
PS

The previous discussion concerning nonhomogeneous shell

walls and the effect of ring frames and boundary conditions

applies also to the spacecraft panels.

3.2 Division of Modes of Each Element into Groups of

Similar Modes

The elements shown in Fig. 3 and described in the previous

section are each lightly coupled to the neighboring elements

and are lightly damped. Thus, to perform a statistical energy

analysis in bands of frequencies, we group the modes within

each element according to their coupling to modes in other

elements and their resonance frequencies. An appropriate
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grouping for a particular frequency band is shown in Fig. 7. The

modes of the shroud model are separated into four groups. First,

modes that are both resonant within the band and spatially well-

coupled to the acoustic field are grouped together.* Second,

modes that are resonant but not well-coupled to the sound field

are grouped together.** Third, modes that are spatially well-

coupled but not resonant are grouped together. Finally, modes

that are neither well-coupled nor resonant are grouped together.

The modes of the interior acoustic space are grouped into

resonant and nonresonant modes. Finally, the modes of the space_

craft model are divided into AF and AS modes and nonresonant well-

coupled and poorly coupled modes.

Certain groups of modes can be neglected in our analysis.

Some modes in the cylindrical shell and the spacecraft are neither

well-coupled nor resonant; these can be neglected, since their

response and energy transmission will be negligible compared

with that of the other modes. Nonresonant modes in the interior

space can also be neglected, since their response is small and

These modes are termed acoustically fast (AF), since their

associated bending wavespeed is greater than the speed of
sound in the acoustic space.

** These modes are termed acoustically slow (AS).
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and they transmit negligible energy to the spacecraft compared

with the resonant modes.* In addition, we have assumed that

groups of modes in an element are uncoupled with other groups
in the same element.**

The paths of energy flow that we consider are shown in

Fig. 7. Note that we have neglected the power flow i1_to the

mechanical path. This neglect is valid provided that the
dissipation loss factors of the ring frame and mounting trusses

are not larger than that of the shroud. In the following

Sections, we calculate the response of each element in bands
of frequencies. Energy transmitted by resonant and nonresonant

modes is considered separately.

3.3 Formulation of the Power-Balance Equations

The spectral response levels of the elements in the

acoustic path can be found by using the statistical energy

analysis described in Chapter 2. We first set up the power-
balance equations for each group of modes selected in the

previous section. These equations can be solved for the energy

of each modal group in bands of frequencies. Then, to complete

* Note that we restrict our analysis to the frequency range in
which resonant interior space modes exist.

** This may or may not be true. An experimental study is needed
to support the hypothesis. The role of intermodal coupling
in the same structure can be assessed theoretically by an
additional calculation in which the modes are intimately
coupled and equipart their total energy. For the 0G0 space-
craft assembly, the noise reduction increases approximately
5 dB below the ring frequency; this increase is due to inter-
modal energy sharing.
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the analysis, we relate the space-average mean-square spectral

acceleration or sound pressure response level of each element,

S (i)(f) or S (i)(f), to these modal group energies.
a p

When modes of the system reach steady-state energy levels,

the net power flow in a band of frequencies into each group of
modes must be zero. For example, a power balance in a band of

frequencies on the acoustically fast (AF) group of shell modes

gives

H2AF, I + H2AF, 3 + H2AFdiss = 0, (18)

where _a,b represents net power flow in the frequency band from
modal group a to modal group b, and 1,2AF, 2AS, 2NR, 3, 4, and
_NR represent the modal groups. Using Eqs. (12) and (16), we

can express the terms of Eq. (18), and of other similar equations,
in terms of the modal densities, the loss factors, and the group

time-average total energies. In this way, five linear algebraic

equations are obtained. By power balance, we obtain for modal

group 2AF

-- [ E2AF_q2AF, I n2AF
n2AF

-- + eq2AF, 3 n2AF
n I

÷ _2AF E2AF = 0 (19a)
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For modal group 2AS, we obtain

_)_2AS, i n2AS Km
n2AS

-- [ E2AS+ @q2AS,3 n2AS -
n2AS

+ _2AS E2AS = 0 (19b)

Similarly, for modal group 3, we obtain

-- [ E2AF
@_2AF, 3 n2AF --

n2AF
h + _] 2AS, 3 n2AS K3
n 3 n2AS

- [  4AF+ _4AF,3 n4AF --
n4AF

E_ ] _ [E4A S
J + _q4AS, 3 n4AS --

n 3 n4AS

- _3 E3 + H2NR,3 = 0
(19c)

In Eq. (19c) we have included the power flow from nonresonant

shell modes. In future calculations, this power flow will be

set to zero to evaluate the transmission by resonant modes

alone. Then, the power flow to resonant shell modes from the

exterior field will be set to zero to evaluate the transmission

by nonresonant modes alone.
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E4AF 44AF,3 n4AF --
n%AF

+ _44AF E4AF = 0

E3

(19d)

For modal group 4AS, we obtain

-- [ E4AS°_4AS 3 n4AS --
' n4A S

E3] + E4AS = 0
n3

• (19e)

These five linear algebraic equations can be solved for the time-

average total energies of each group, in bands of frequencies

in terms of the time average total energy in group I, which we

take to be specified, and the modal densities and loss factors

for each group. Solutions for the modal energies of each group

will be presented in Sections 3.6 through 3.8. The loss factors

and modal densities needed to evaluate these expressions are

found in Section 3.4. Finally, the nonresonant response and

transmission is found in Section 3.5.

The space-average mean-square spectral acceleration levels

or sound-pressure levels of each element in the acoustic path can

be found in terms of the time-average total energies of the modal

groups representing the element. We calculate the resonant and

nonresonant energies separately. The resonant time-average total

energy in each element in a band of frequencies is simply the sum

of the time-average total energies of each modal group within the

element, i.e.,

E2res" (20)= E2A S + E2A F •
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Since the time-average kinetic and potential energy of a

lightly damped multimoda! system excited by broad-band noise

are equal, the spectral acceleration levels of structural

elements are given as

_2E2res
S (i)(f) _

a ps(i)AiA

(21)

where A is the frequency bandwidth being considered.

spectral sound-pressure levels are given by

PoCo2Ei
S (i)(f) =
P ViA

The

(22)

In summary, the group time-average total energies can be found

from Eqs. (19) and then used to calculate the resonant response

of each element in the acoustic path.

In the next two sections, the parameters needed to

evaluate Eqs. (19) are found.

3.4 Calculation of the Modal Densities and Loss Factors

In this section, we obtain expressions for the modal

densities and coupling loss factors needed to analyze resonant

energy flow in the acoustic path. The expressions that are

obtained give averages of these quantities for an ensemble of

structures or acoustic spaces that have the same gross proper-

ties but differ in fine detail. Also, we estimate the dissi-

pation loss factors, since a theoretical calculation is not

possible and experimental evidence is not available.
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3.4.1 Acoustic-Space Modal Density

The average modal density of an ensemble of acoustic spaces

of volume V and speed of sound co is given in Refs. 16 and 17.

In our notation, this expression is

f2 v (23)
n(f) - 3

C o

where n(f) is the ensemble average number of modes per unit

frequency, f is the frequency in cycles per second, V is the

acoustic-space volume, and co is the speed of sound. It

follows that the average number of modes in a band of frequencies

is given approximately by

Nin band A _ n(f)A , (24)

where f is the center frequency of the band and A is the band-

width. The variance of the number of modes in a frequency band

from the mean value will depend on the magnitude of the mean.

If the mean number of modes is high, the variance throughout the

ensemble will be small. Thus, for sufficiently high frequencies

or wide bandwidths, Eq. (24) will be an accurate estimation of

the number of modes in a frequency band for any given acoustic

space of volume V.

3.4.2 Flat Panel Modal Density

In our analysis of the acoustic path, we need the flat-

panel AF and AS modal densities in bands of frequencies. These

densities are particularly easy to find, since, by definition,
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all modes below the panel critical frequency are acoustically

slow, while all modes above this frequency are acoustically

fast. The panel critical frequency is defined as the frequency

_ "'"_ _ -__ _^,_T_length in the p_n_l is equal to_ _,_ _,e free ........_ ............

the acoustic wavelength:

2
C

I o

fc - 2_ _c_ (25)

where fc is the critical frequency, Co is the acoustic speed

of sound, _ is the panel-bending radius of gyration, and c_

is the longitudinal wavespeed in the panel.

The average density of resonant modes in an ensemble of

panels of area A, radius of gyration K, and longitudinal wave-

speed c_ is given in reference 17 as

n(f)= A
2_0_ (26)

Thus, the density of AF and AS modes above the critical

frequency can be given as

A

nAF(f)- 2_cl

f > fc (27a)

and

nAs(f) = o
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The AF and AS modal density below the critical frequency is

nAF(f)= 0

hAs(f)_ A
2_c_

f < fc (27b)

The average number of modes in a band of frequency for an ensemble

of panels is given by n(f)A. The variance from this average

throughout the ensemble will decrease as the bandwidth increases.

Our analysis is restricted to bands in which many modes resonate,

so that the average number of modes will be a valid estimation

for any of the panels within the ensemble.

3.4.3 Cylindrical Shell Modal Density

For analysis of the transmission of resonant acoustic energy

through the shroud, we require the density of AF and AS shell

modes in bands of frequencies. The approach that we follow is

similar to that used in Refs. 18 and 19 to obtain the density of

resonance frequencies in a cylindrical shell. We review the

derivation of this density, and then extend the approach to find

the density of AF modes. The density of AS modes follows as the

difference between the densities of all resonant modes and AF

modes.

The modal densities that will be obtained are average modal

densities over an ensemble of cylindrical shells that differ only

in details, such as boundary conditions.
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Following the approach of Ref. 18, we find an expression

for the resonance frequencies of a thin-walled simply supported

cylindrical shell. _nis expression is given in Ref. 18 as

v2= 2) o.4

(d2+n2)2

+ iB2[o.2+n 2 ]2

_ 12,21 [ (4--l,z)n2 - 2 - b ] (28)

where

f c£
v = _-- , fr = 21Ta •

r

h m_a

2_ _ '

v is a dimensionless resonance frequency, fr is the ring

frequency, c_ is the longitudinal wavespeed in the shell wall,

a is the shell radius, _ is Poisson's ratio for the wall

material, m is the axial mode number (m+l equals the number

of nodes in the axial direction), n is the circumferential

mode number (one-half the number of nodes in the circumferential

direction), _ is the length of the shell, and h is the shell-

wall thickness. Eq. (28) is valid if _ >> v. Since this con-

dition is violated only for the lowest-order modes in very long

cylinders, it is not Judged to be a serious restriction. The

first term of Eq. (28) results from membrane stresses in the

cylinder, the second term results from bending stresses, and
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the third term is a correction that accounts for beam motions of

the shell. In future calculations, we neglect this correction

term, since it affects only a small number of modes in the com-

plete groups that we consider. Also we neglect _, since it is

small as compared with unity.

It is useful for our calculations to rewrite Eq. (28) in two

forms. First, we can write Eq. (28) in terms of wavenumbers

(with the previously discussed simplifications) as

= +  2a4k4 (29)
k

where

k 2 _ kx 2 + ky 2

k is the wavenumber magnitude, k is the circumferential wave-
X

number, and ky is the axial wavenumber.

Second, we write Eq. (29) in terms of dimensionless variables

as

v2 = sin 4e + r4 , (30)

where

2 a2k 2r =
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and

k
4.,-, .7"S ___e =

k

From Eq. (29) or (30), lines of constant resonance

frequency v can be plotted in dimensionless wavenumber space as

a function of_F_ a kx and_ a ky (see Fig. 8). Owing to the

use of dimensionless variables, this plot is valid for all thin-

walled cylindrical shells. In Fig. 8, the region in which the

membrane effects--the first term of Eq. (29)--dominate is shown

along with the region in which bending effects--the second term--

dominate. The borderline between these two regions is given by

the condition that the first and second terms of Eq. (28) or

(29) are equal.

In a simply supported cylindrical shell, two modes with the

same resonance frequency lie at intersections of lines of

ky = m_/_, where m is an integer, and kx = n/a, n an integer.

For other boundary conditions, the modes will shift from these

positions by varying extents up to 1/2 unit in m and n. However,

the average number of modes with resonance frequencies below a

particular value of v is given by the average density of modes

in the dimensionless wavenumber space times the area under the

line of constant resonance frequency corresponding to that value

of v.

If we assign to each pair of modes the rectangular area in

the dimensionless wavenumber space extending half way to their

nearest neighboring pair, then the density of a mode in



dimensionless wavenumber space is twice* the reciprocal of
this area

2 (3z)
n(_ a kx , _/r6 a ky) = (_)(_ _a/_) = _a_

Thus, the total number of modes with dimensionless resonance

frequencies below v is given by

e (v)
2_ If max 2

N(v) - _aB 2_ r dO , (32)

0

where N(V) is the average number of modes with resonance fre-

quencies below v, and 0max (v) is the largest 0 between zero and

_/2 radians for which Eq. (30) can be solved for a real r:

0 (v) = arcsin_V , for v < I,
max

0ma x(v) = 7r/2 for v > i.

By substituting the value of r2 from Eq. (30) into Eq. (32), we

obtain the expression

=

o (v)

f max 1/2(V2-sin40) dO. (33)
_-a_

0

*The factor of two arises because modes occur in pairs.
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Eq. (33) was evaluated numerically. The results are presented

graphically in Fig. 9, and can be compared with a more approxi-
mate expression obtained in Ref. 18. 20 The most significant

difference between these results is that Eq. (29) is applicable

at and near the ring frequency.

The ensemble average modal density is found from Eq. (33)

by differentiation:

n(V) _N
=_-g • (34)

where n(V) is the average number of modes per unit v.

indicated differentiation gives

The

ema x (v ) -I/2

n(V) - I / [ I sin%8Iv2 dO.
_-a_ 0

(35)

20
This equation agrees with that obtained in Ref. 19.

was evaluated numerically and is presented in Fig. I0.

Eq. (35)

The density of modes in even a small band of frequencies

must be found by integration of the modal density• because of

the singularity at the ring frequency• v = I. For calcula-

tions in this report, we have calculated an average modal

density over thlrd-octave frequency bands. This density is

defined as
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<n(V)>I/3 octave
 (v2) - N(Vl) (36)

v2 - vI

where < >1/3 octave represents an average over I/3-octave bands,

v is the band center frequency, and v2 and vI are the upper and

lower limits of the band. The density predicted by Eq. (36) is

plotted in Fig. I0, in dimensionless form.

At frequencies above the ring frequency, v > i, the

cylindrical-shell modal density becomes that of a flat plate with

the same surface area.

An AF mode satisfies the condition that its associated bend-

ing wavespeed is greater than the speed of sound,

Cb AF _ Co
(37)

For the cylindrical shell, the wavespeed associated with a

particular mode can be found in terms of the dimensionless

variables introduced in Eq. (30).

_/"_ (sin4e + r4) I/2
cb = _ = cl r

(38)

Thus, the condition for an AF mode is

2
C o

-_-_(sin4eAF + rAF 4) >I

rAF c

(39)
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where rAF and _AF are the coordinates of an AF mode in

dimensionless k-space. The solution of Eq. (39) for rAF

is

2

2> i c° [ I c
-- 2

rAF < 26 c_ 2+ o4-52 c

1/2

(#o)

where ">" applied to the "+" solution and "<" applies to the

fT T!
- solution. If we define v as the ratio of the critical

c

frequency to the ring frequency,

2
f c

c 1 o (41)-Z

c fr - 5 c_ 2 '

then Eq. (40) can be written as

7

I 12 > _ + _£ l 2 (42)
rAF < 2 -- 2 vc

The "+" solution of Eq. (42) corresponds to AF modes with

resonance frequencies near and above the critical frequency.

These modes would also be acoustically fast in the flat panel.

The "-" solution, however, corresponds to AF modes with

resonance frequencies near and below the ring frequency. For

thin-walled cylindrical shells, where _<<i, the ring frequency

will lie well below the critical frequency, so that AF modes

occur below the critical frequency. AF modes do not occur

below the critical frequency in flat panels. Therefore, the
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response, below the critical frequency, of a flat panel can be

significantly less than that of a cylindrical shell of equal

21,22
area. The region of AF modes near the ring frequency, for

a value of v = 8, which is appropriate for the 0G0 shroud model,
c

is indicated in Fig. 8. This region is well within the membrane-

controlled region and indicates that the increased stiffness due

to curvature is responsible for the occurrence of AF modes in

this region.

When v is large, Eq. (42) takes on a simple form,
C

2
rAF > vc

and v >> 1C

2 sin4@AF

rAF <
V

C

(43)

We now follow the same procedure as was used to find the density

of resonant modes of the cylindrical shell. The expression

NAF(V) is the average total number of AF modes with resonance

frequencies below v, for an ensemble of cylindrical shells.

NAF(v) is given by the average density of modes in the dimension-

less wavenumber space times the area of the AF mode region below

the line of constant resonance frequency v. When v >> i, the
c

lines of constant resonance frequency in the AF mode region are

given by
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e = arcsin_. (_4)

Thus, the number of AF modes with resonance frequencies below

v is

0

maxN_(v) s_ 1 sin4e de
=_ 2 V J

0 C

(45)

where e equals the smaller of arcsin _v and _/2.
max

can be evaluated to give

_q. (45)

_AF(v) _ [ 1/2 B/2]_Vc 3 sin-l@ - 5(v-v2) +2 EV(l-V) ,

if V < I, (46)

and

3_ if v > I.
NAF(v) = 16a_Vc ,

A modal density can be obtained by differentiation of

this equation:

NAF

nAF(v) = -b-V-- (47)
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For the purposes of the analysis in this report, however, it is

more convenient to obtain the average modal density in third-octave

bands, defined by

<nAF(V)_I/3 octave band
vI - v2

(48)

where v is the center frequency of the band, and vI and v2 are

the upper and lower frequency limits of the band. The I/3-octave

average AF modal density is plotted in dimensionless form in Fig..

II. Expression (49)gives the average number of AF modes for an

ensemble of similar cylindrical shells:

<nAF(V)>I/3 octave Av, (49)

where Av is a third-octave bandwidth in units of dimensionless

frequency. As previously described, if this quantity is suf-

ficiently large, it will be an accurate estimate for the number

of modes occurring in a third-octave band for any member of the

ensemble.

The density of AS modes is found as the difference between

the density of all resonant modes and AF modes. The density of

all resonant modes is plotted in Fig. II and can be compared with

the AF modal density to obtain the AS modal density.

For future calculations, we need the cylindrical-shell modal

densities as a function of frequency. These are given by
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<n(f)>I/3 octave
2_a

_n_VJ_i/3t_ octave c_
(5o)

We need also the modal densities of shell segments separated

by ribs. Since the modal density of two connected structures

is the sum of the modal densities for each individual structure,

the modal density of a ribbed shell is simply the sum of the

densities of each segment. For our model of the 0G0 shroud,

each segment is the same except for axial length. Therefore,

the modal density of the shroud model can be found in terms

of the total length of the shell.

3.4.4 The AF Mode-Acoustic-Space Coupling Loss Factor

For our analysis, we need the coupling loss factors be-

tween an AF mode and an acoustic space for both a cylindrical

shell and a flat panel. As discussed in Section 2.4, our

approach is to calculate the coupling loss factor between an

AF mode and an infinite acoustic space. We hypothesize that

this coupling loss factor is the average coupling loss factor

between the AF mode and an ensemble of acoustic spaces with

the same volume but different geometries.

If we restrict our analysis to frequencies at which the

acoustic wavelength is shorter than the structural dimensions,

the coupling loss factor for AF modes in the cylindrical shell

and in the flat panel will be similar. Therefore, we can use

the coupling loss factor between a flat-panel AF mode and an

acoustic space.
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The coupling loss factor can be expressed in terms of the

radiation resistance or the radiation efficiency as

h _ Rrad P°c°
Ps A n _ Ps Grad ' (51)

where Rra d is the radiation resistance and Gra d is the radiation

efficiency. The radiation resistance of an AF mode in a flat

panel in an infinite baffle has been calculated in Ref. 23 as

-l/2

rad -- po co A 1 - -ko , k < k o
, (52)

where k is the acoustic wavenumber and k is the modal wavenumber.
o

This expression does not apply at k = ko, where other effects

cause the radiation resistance to remain finite. From Eq. (52),

we see that all AF modes do not have the same coupling to the

acoustic field. This is contrary to our original hypothesis in

setting up the modal groupings. We assume that all AF modes have

a radiation resistance equal to PoCo A.

RAF
rad _ P oCo A '

(53)

or

AF
d _-- I
rad

5O



Since only a few modes, whose wavenumbers are very close to the

acoustic wavenumber, do not agree with this approximation, it is

judged to be valid for our analysis. The average coupling loss
__ for _ _ o• _ _e _ .... d_! group is given by

O

_ o o (54)
_AF, acoust _ Ps

In deriving Eq. (54), we have neglected the effect of

structure geometry on the coupling loss factor by assuming

that the acoustic wavelength was shorter than the dimensions

of the cylinder. For our model of the 0G0 shroud, the region

of frequency where this assumption is valid lies above 200 cps.

Below this frequency, the coupling loss factor will lie somewhat

below that predicted by Eq. (54).

For the flat panel, Eq. (54) is applicable only above

300 cps; below 300 cps, the acoustic wavelength is longer than

the panel dimensions, so that the two sides of the panel become

acoustically short-circuited. We do not encounter this problem,

however, because no AF modes below 500 cps occur in the space-

craft panels.

3.4.5 The AS Mode-Acoustic-Space Coupling Loss Factor

We assume, as in the previous section, that the acoustic

wavelength is shorter than the cylindrical shell radius;

@

When the baffle is not infinite and the panel can radiate from

both sides into the acoustic space, the radiation resistance

is 2PoC ° A, provided the baffle dimensions are greater than

the acoustic wavelength.
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therefore the coupling loss factor for a flat-panel AS mode in an

infinite baffle can be used with only minor corrections for our

analysis. The radiation properties of a flat, infinitely baffled
panel have been the subject of many papers. 15'23 It has been

found that an AS mode radiates power into the far field from its

edges or corners, or, in general, from any region surrounding a

discontinuity such as a rib or ring frame. It follows that the

baffle at the edge of the panel can have a significant effect on

the radiation by an AS mode. If the edge is unbaffled, the two

sides of the panel are acoustically short-circuited near the edge,

so that negligible power is radiated from this region. Also, if
the panel is baffled so that it radiates into 3/4- or I/Z-space*'

rather than I/2-space, the power radiated from the panel edges is

reduced or increased proportionately.

The average radiation resistance of an AS mode in an unribbed

infinitely baffled panel in which the panel dimensions are greater
than an acoustic wavelength is given in Ref. 23 as

AS
Rrad = PoCoPr_c g2(f/fc ) + PoCo_o_c gl (f/fc)

1/2 ko_ x, I/2 ko_y > 1 ] , (55)

where Pr is the radiating perimeter, _c is the acoustic wavelength

, _ is the acoustic wavelength atat the critical frequency fc o

the frequency under consideration, k o is the acoustic wavenumber,

_x and _y are the panel dimensions, and g2 and gl are functions

* 3/_-sp_ce allows radiation from an edge at angles from grazing
to 270 v.
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given in Ref. 23. Usually, the second term of this equation

will be negligible compared to the first. When the panel

dimensions are shorter than an acoustic wavelength, the AS mode

average radiation resistance is given by

RradAS = PoCoAp(_/_) (Pr_c/Ap) (f/fc) 1/2

1/2 ko_x, 1/2 ko_y < I ] . (56)

For a ribbed panel we assume that the structural bending-

wave-length is less than the spacing between ribs and that the

vibration fields on the two sides of the ribs are uncorrelated.

Then the panel will radiate from its edges and from both sides

along the ribs. The radiating perimeter is twice the length of

interior ribs plus the length of the baffled panel edges. Un-

baffled panel edges are acoustically short-circuited and there-

fore do not contribute to the radiating perimeter. For the

ribbed panel, _x and _y in Eqs. (55) and (56) are the rib

spacings.

Eqs. (55) and (56) are valid also for a cylindrical shell

at frequencies above the ring frequency. This is because the

curvature effects are unimportant for these frequencies and
22

the vibrational behavior is that of a flat panel.

The modes within the AS group have varied radiation

resistances, contrary to our assumption in setting up the

groups. A more detailed division would consider AS-edge and
24

AS-corner modes separately. The errors that result from

using one AS mode group rather than two are not great.
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3.4.6 Estimation of Dissipation Loss Factors

In spite of recent advances toward an understanding of damp-

ing mechanisms in structures, the dissipation loss factors cannot

be predicted theoretically at this time. Therefore, when possible,

structural dissipation loss factors should be determined by ex-

periments on the spacecraft assembly, so that the theoretical

analysis can be based on an accurate estimation of this parameter.

Appropriate experimental techniques for determining the dissipa-

tion loss factor are described in Appendix A.

Since we do not have experimental results on which to

estimate the dissipation loss factors for the 0G0 shroud and

spacecraft panels, we must make an empirical estimate of this

parameter based on past experimental and field studies of struc-

tures. In our calculations, we estimate the structural dissipa-

tion loss factors to be

_structure = 10-2 (57)

For certain calculations, a value of 3 x 10 -2 will also be used

to show the role that this parameter plays in the response pre-

dictions.

The acoustic-space loss factor is largely controlled by the

liner within the shroud. Therefore, if the acoustic absorption
26

properties of this liner are known, the acoustic-space loss

factor can be estimated with confidence. Liners used in most

spacecraft assemblies are selected for their thermal insulation

properties, so that data concerning their acoustic properties is

not readily available. Therefore, for our theoretical study, we
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make an approximate estimate of the expected absorption co-

efficient for a typical spacecraft assembly:

_3 = 0.I (58)

In some calculations, a value of _3 = 0.3 is used to show the

role that interior space absorption plays in determining the

response levels of the spacecraft.

The actual 0G0 shroud liner is a microquartz felt blanket.

To support the above estimation, we measured the absorption

coefficient of this material experimentally for normally

incident sound waves using an impedance tube. The results of

this experiment indicated absorption coefficients from 0.05,

at low frequencies ( _00 cps ), to 0.7, at high frequencies

( _8000 cps ). Since approximately one-half of the shroud

surface is lined, these absorption coefficient values give

average absorption coefficients of 0.025 to 0.35. The impedance

tube experiment must be looked upon only as an approximate means

to estimate the absorption coefficient in the spacecraft assembly,

since only normally incident sound waves are used and the liner

backing is rigid. A more appropriate method of estimating the

interior space absorption coefficient is described in Appendix A.

The dissipation loss factor is related to the average

absorption coefficient by

CoA 2 _

= " (59)
3 4 v3
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where A2 is the surface area of the shroud model.

3.5 Formulation of the Response and Transmission by

Nonresonant Modes

_ne response of a curved or flat flexible panel to a sound

field, when the panel dimensions exceed both the acoustic and

structural wavelengths, may be thought of as composed of two types

of motion. First, the sound pressure will induce a panel motion

that matches the pressure field in both frequency and wavelength.

This response is often referred to as the "forced-wave" or

"forced" response. When the induced wavelength exceeds the free

f!exural wavelength, the modal responses that make up the forced-

wave response are nonresonant and are controlled by the modal

mass.

At the boundaries of the panel, the forced wave alone will

not satisfy the boundary conditions. In order to do so, bending

motions, which are solutions of the homogeneous wave equation,

are generated, and these combine with the forced waves to satisfy

the boundary conditions. These additional motions are commonly

referred to as "free-wave" or "free" response. On a modal basis,

the free response is described by resonant modes. We found in the

previous section that the resonant response and transmission are

best handled on a modal basis. For the nonresonant response,

however, it is more convenient to think in terms of forced and

free-wave response.

The forced response, since it does not depend on the

existence of boundaries, will be the same for the infinite panel

as for the finite panel. Our approach is to calculate the forced

response and transmission in terms of the infinite-panel im-

pedances. This approach is well-known in architectural acoustics.
8

56



The pressure on an infinite panel resulting from a sound

wave incident from an angle ¢, measured from the normal, can be

separated into a blocked pressure and a radiation pressure

component. The blocked pressure is that pressure that would

exist on the panel if it were not allowed to move. The

frequency and wavelength of the blocked pressure will be the

frequency and trace wavelength of the incident sound wave. The

pressure amplitude will be twice that of the incident wave

because of the interaction of the incident and reflected

waves.* The radiated pressure will be caused by sound waves

radiated from each side of the panel, owing to its motion. The

frequency and trace wavelength of the radiated sound waves will

be the same as those of the panel vibrations, which in turn are

the same as those of the incident sound wave. It follows that

the radiated sound wave is a plane wave traveling at an angle ¢

from the normal. The radiation pressure opposes the blocked

pressure and acts on both sides of the panel with an amplitude

equal to that of the radiated plane wave. Therefore, the net

pressure difference on the surface of the panel is

p(x,t,¢) --2Re EP
inc - Prad ] e i(kosin¢x - ] • (6O)

where p(x,t,_) is the net pressure acting on the panel, x is

a distance along the panel surface, Re signifies "real part

of," P. is the complex pressure amplitude of the incident
lnc

* If the radius of curvature of a curved panel is not large as

compared with an acoustic wavelength, the incident wave is

diffracted by the surface and a description of the blocked

pressure acting on the panel is more complicated (Ref. 25).
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plane wave, _ is the angle of incidence, Prad is the complex

pressure amplitude of the radiated plane waves, k is the acoustic
o

wavelength, and m is the frequency of the excitation. The com-

plex velocity amplitude in the infinite panel is related to the

complex pressure amplitude on its surface by the panel impedance:

2[Pin c - Prad ]
= , (61)

Vpanel Zpane I

where Zpane I is the panel impedance. Similarly, the radiated com-

plex pressure amplitude is related to the complex velocity ampli-

tude in the panel by

Prad = Zrad Vpanel , (62)

where Zra d is the acoustic radiation impedance.

We can combine the above equations to find either the re-

sponse or the transmission of an infinite panel excited by a plane

wave. The complex response amplitude is given by

Vpane I 2 , (63)

Pine = Zpanel + 2 Zra d

while the complex transmitted-wave amplitude is given by

Ptrans 2 Zra d
= .

Pine Zpanel + 2 Zra d
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Since we are considering the region in which the trace

wavelength of the exciting plane wave exceeds the free-bending-

wave length, the infinite panel impedance is purely reactive:

Zpane I = i_p s , (65)

where Ps is the surface mass density. The radiation impedance
also takes on a simple form, since the panel vibrations match

spatially with a plane sound wave radiated at an angle ¢. The

velocity of the radiated plane wave nomnal to the panel must

match the velocity of the panel. Thus, the acoustic radiation

impedance is

PO Co

Zradiation - cos _ ' (66)

where PoCo is the acoustic impedance, and _ is the angle in

•dnich the wave is radiated (also the angle of incidence of the

incoming acoustic plane wave).

Using these impedances, the complex forced response

amplitude to an incident plane wave is

_anel 2

Pinc - i_Ps + 2 PoCo/COS_ ' (67)

while the complex amplitude of the transmitted wave is
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2PoCo/COS¢Ptrans _ (68)
Pinc i_Ps + 2PoCo/C°S¢ "

When the panel excitation is a diffuse field of noise, the

spectral response and the power transmission due to forced wave

motion is found by averaging the mean-square response or power

transmission over all solid angles of the incident wave. The

mean-square response velocity spectrum is given by*

Sv(f)

Sp(f)

"_/2

f IP_nl sine de

0

_/2

2 .f sine d¢

0

(69)

where S (f) is the mean-square forced response velocity spectrum,
V

S (f) is the mean-square sound pressure spectrum in the diffuse
P

and IV/Pinl is the magnitude of the complex amplitude ratiofield,

given by Eq. (67). Equation (69) can be evaluated to give

S (f) m2p 2 i o o tan-I
p s _ Ps k2p°c°J

(70)

* _me factor of two arises because the sound field exists only

on one side of the panel.
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The second term of this equation is important only for very

light panels. The spectral velocity predicted by Eq. (70)
is referred to as random-incidence mass-law response.

The acoustic power transmitted by a unit area of the

panel, Htran s, is also found by summing over all directions of
incidence

w/2

Htrans = _ Vpanel Ptrans sine d¢ , (71)

0

where Ptrans is the complex conjugate of Ptrans" while the

acoustic power incident on this panel per unit area, Hinc,

is given by

Hinc- _ / IFino 12
,PoCo COS¢ sine d¢

0

(72)

The ratio of the power transmitted to the power incident is

referred to as a sound transmission coefficient T. For

diffuse field excitation, the sound transmission coefficient

is found from Eqs. (67), (68), (71), and (72):

2 2 2p 2 )-- Htrans 4Pc Co ( s7= = In I+.,

H. c°2Ps2 2 2 "inc. 4po Co

(73)
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where T is the random incidence mass-law sound transmission co-

efficient. It is also common practice to define a transmission
loss (TL). This parameter is given by

(I)TL = I0 lOgl0 7 (74)

The random-incidence mass-law transmission loss predicted by

Eqs. (73) and (74) agrees with that plotted in Fig. 13.7 of

Ref. 8.

Equations (70) and (73) give the response and power trans-

mission of an infinite panel when the wavelength of the exciting

pressure field is much longer than the free-bending-wave length in

the panel. These equations can also be used to predict the forced-

wave response and power transmission of a finite panel, when the

panel dimensions are long in comparison with the exciting pressure

wavelength. The region of application for most panels is the

frequency range above the first few resonances of the panel and

below the critical frequency, atwhich the acoustic wavelength

is equal to the free-bending-wave length. In the following

sections our applications of the formulas are restricted to this

region of frequency.

3.6 Acoustic Noise Reduction by the Shroud

In Section 3.3, a set of algebraic equations was developed

by power balance on the modal groups in the acoustic path. This

set of equations can be solved for the vibration or sound-pressure

spectrum of each element in the acoustic path, in terms of the

exterior sound-pressure spectrum and the structural and acoustic

properties of the element.
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In the present section, we consider a preliminary step

toward the prediction of the spacecraft vibration spectrum:

namely, the prediction of the noise reduction by the cylindrical-
shell model of the shroud. The noise reduction (NR) is defined

as the difference in sound-pressure levels (expressed in

decibels) outside and inside the shell.

The noise reduction by the shell can be conveniently
studied in three regions of frequency27: low frequencies,

below the first resonant frequencies of the shell and the

interior acoustic space; intermediate frequencies, at

which either the shell or the interior space vibrates

resonantly; and high frequencies, at which both elements

vibrate resonantly. We restrict our attention in this report

to high frequencies.

In the calculations that follow, noise transmitted by

resonant and nonresonant shell motions are considered

separately. The over-all noise transmission will be a super-

position of the two contributions.

In Section 3.6.3, the noise reduction by the 0G0 shroud
model is calculated as an example illustrative of the more-

general predictions developed in Sections 3.6.1 and 3.6.2.

3.6.1 Noise Reduction by Resonant Motion of the Shroud

The noise reduction by resonant motion in the cylindrical-

shell model of the shroud can be found from the power-balance

equations, Eqs. (19), with the power flow from nonresonant

modes, H2NR, 3, equal to zero. As a preliminary step, however,

we note that the coupling loss factor between cylindrical-shell
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modes and the exterior sound field is approximately equal to that

between shell modes and the interior field. The only difference

is due to the baffling at the ends of the shell. The AS modes

radiate from the ends of the cylindrical shell into 3/4-space for

the external field and I/t-space for the internal field. Because

of the shell ribs, however, the radiating perimeter is much longer

than the edges at the ends of the cylinder. Therefore, the

difference in baffling will produce only a small difference in

the over-all AS mode coupling loss factor to the interior and

exterior spaces.

Assuming that the coupling loss factors between the shell

modes and the two acoustic spaces are equal, we first solve

Eqs. (19) for the ratio of exterior to interior acoustic-space

time-average total energies:

E 1 nI

E 3 n3

_2AS1 n2AS + _2AFI n2AF + _3 eq" n 3

2 2

_2AS1 n2AS _2AF1 n2/_
+

2_2ASI + _2AS 2_2AFI + _2AF

, (75)

where _3 eq" is a composite loss factor accounting for losses in

the acoustic space and in the spacecraft panels, and

_3 eq" = _3 + n4AF _4AF n4AF3 + n4AS _4AS n4AS3 • (76)

n3 _4AF3 + _4AF n3 _4AS3 + _4AS

rime mean-square sound-pressure spectra can be expressed in terms

of these group energies through Eq. (22):
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sp(1)(f)_-El v3
(3)

s (f) v. _'3p i

(77)

A further step toward prediction of the noise reduction is

taken by relating the modal densities n I and n 3 in Eq. (75) to

the volumes V I and V 3 through Eq. (23):

n I V I

n3 - V3 (78)

It follows now that the ratio of the exterior to interior sound-

pressure spectra due to noise transmission by resonant shell

modes is given by the bracketed expression in Eq. (75).

s (1)(f)

sP(3) (f)
P

_2ASI n2AS + _2AFI noAl__ + _3eq'n_ -I
2 2

_2AS1 n2AS _2AF1 n2AF
+

2_2ASI + _2AS 2_2AEI + _2AF

The noise reduction follows, by definition, as

• (79)

E js (i)(f)
p

NR(res) : I0 lOgl0 S (3)(f)

P

(80)
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f _
where NR _res_ indicates noise reduction by resonant shell modes.

The parameters needed to evaluate this noise reduction have been

calculated or estimated in Section 3.4. It was found in that

section that the modal density of AF shell modes is zero for

frequencies between the ring frequency and the critical frequency.

Therefore, the noise reduction can be simplified in this frequency

range:

NR (res) = I0 lOgl0 {i +

_ 2 A s

r
+ 12 +

_2AS, 1 L 1"12AS ]fn_A3S 'rl_eq" ] }
_]2AS, I h2AS, I

fr < f < fc • (8l)

Similarly, above the critical frequency, no AS modes occur, so

that NR (res) can be written as

_2AF [NR (res) = I0 lOgl0 I + + 2 +
_2AF, I

'rl 2A._ ] [n__A3F "r13eq"
h2AF, I "

f > f . (s2)
C

For frequencies below the ring frequency, Eq. (79) cannot

generally be simplified. However, we can make an approximation

that is appropriate for most spacecraft assemblies. We assume

that the AF modes below the ring frequency dominate the acoustic

acceptance and radiation properties of the shell, i.e., that

n2AF _2AF, I >> n2AS _2AS,I.
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With this assumption, the noise reduction becomes approximately

NR (res) = I0 lOgl0 _I +
'_2AF

÷ [2 ÷ _2AF ]i n3 _3eq" "

fmin < f < fR' (83)

where f is the lowest band center frequency for which a
min

sufficient number of AF modes occur in the test band to make

the ensemble average loss factors and modal densities accurate

estimates for each member of the ensemble.

The above equations can be used to calculate the noise

reduction by resonant modes in the 0G0 shroud model. First,

however, we continue our general formulation by predicting the

noise reduction by nonresonant motion of the shell.

3.6.2 Noise Reduction by Nonresonant Modes in the Shroud Model

The noise reduction by nonresonant modes can also be found

from the power-balance equations, Eqs. (19), and the results

of Section 3.5. Since we have considered noise transmission by

resonant modes separately, we set the power input to the

resonant modes from the exterior acoustic space equal to zero.

This is done by setting E 1 equal to zero in Eqs. (19a) and

(!9b). In addition, we restrict our consideration to fre-

quencies between the ring frequency and the critical fre-

quency, since it is only in this region that the standard mass-

law prediction of the noise transmission is valid. Since we

restrict our analysis to this frequency range, we can set the
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density of AF modes equal to zero in the power balance equations.

Equations (19) can now be solved for the total energy E3:

I n2AS _2ASI + _2AS ) + q3eq'_E3 , (8_)H2NR'3 = _3 _2ASI 2_2ASI + _2AS

where _3 eq" is given by Eq. (76) and q2AS3 is assumed to be equal

to _2ASI" Equation (84) expresses a power balance between net

power into the interior space modes from the nonresonant modes and

net power lost by AS mode dissipation resulting from radiation to

the exterior space and dissipation into the interior space and the

spacecraft panels.

The net power transmitted to the interior acoustic space by

nonresonant modes, H2NR, 3 can be expressed in terms of the sound

transmission coefficient _, given by Eq. (73):

H2NR, 3 = 7 Hin c , (ss)

where Hinc is the net acoustic power incident on the shroud and

is given by

s (1)(f) _ s (3)(f) (s6)
znc - _PoCo p p "

The group time-average total energy E 3 can be expressed in

terms of the spectral sound pressure by Eq. (22):
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2
2p c

(_3)(f) = o o
Sp V 3 A

(22)

Finally, Eq. (84) can be solved for the ratio of external to

internal sound-pressure spectra and the resultant noise re-

duction by nonresonant modes:

NR(nonres) = 10 1ogl0 {1+ Lt_V_ [ n2A'-'-S q2AS1 /'q2ASI+'q2AS _" "] }"
T--A2co n3 _2q2ASI+q2AS _+q3eq

(87)

For most spacecraft assemblies, the bracketed term [ ]

can be adequately approximated by q3" In this case, the

noise reduction can be expressed approximately by

NR(n°nres) = I0 lOgl0 {1+ LkeV3 'q_3 }

A2c o

(88)

For the sake of convenience in future sections, we express

the nonresonant noise reduction in terms of an absorption co-

efficient _3" This coefficient is related to the loss factor

q3 by Eq. (59) so that Eq. (88) can be written as

NR (n°nres) = I0 lOgl0 I +-__ .
T

(89)
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3.6.3 Noise Reduction by a Model of the 0G0 Shroud

In this section, we calculate the noise reduction by a model

of the 0G0 shroud. These calculations serve as an illustrative

example of the general formulation of noise reduction by a space-

craft shroud.

An appropriate model of the 0G0 is shown in Fig. i and is

described in greater detail in Section 3.1. Parameter values

describing this model are given in Table I. The dissipation loss

factors of the actual structural elements in the 0G0 assembly are

not known. Furthermore, they cannot be estimated with confidence

theoretically. Thus, we were forced to make a rough estimate of

these loss factors based on past experimental studies of similar

structures. Because of the uncertainty in these estimates, the

predicted noise reduction for the 0G0 shroud may not agree with

that found experimentally. Support of the theoretical predictions

in this report must come from experimental studies in which both

the noise reduction and the dissipation loss factors are found.

Even though the predictions in this section may not be

accurate for the 0G0 shroud, they do show the role that various

parameters play in determining the noise reduction. In this way,

the calculations suggest suitable methods by which the noise re-

duction in the actual shroud can be increased.

The noise reduction by resonant motion of the shroud is

given in various frequency ranges by Eqs. (81-83). The

coupling loss factors and modal densities required to evaluate

these equations are plotted in Figs. 12 and 13. These parameters

have been obtained for the 0G0 model from the equations developed

in Section 3.4. Equation (83) was obtained by assuming that the

AF modes below the ring frequency control the acceptance and
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transmission by resonant modes of the shroud. Reference to

Figs. 12 and 13 shows that for the 0G0 model the factor

n2AF _2AF,3 is more than 8 dB above the factor n2AS _2AF,3"
Thus, the assumption that the AF modes control the noise

transmission by resonant modes is valid.

The noise reduction predicted by Eqs. (81-$3) for the

0G0 shroud model is plotted in Fig. 14. Two values of the

dissipation loss factors _3" q2AF" and _2AS have been used in
these calculations to show the role of these parameters in

determining the noise reduction. Note that between the ring
frequency and the critical frequency a 5 dB increase in either

_2AS or _3 produces a 5 dB increase in noise reduction. As it
turns out, however, the noise transmission in this range of

frequency is controlled by the forced wave or nonresonant motion
of the shell.

Above the critical frequency, a factor of 3 increase* in

the interior-space loss factor _3 produces a 5 dB increase in
the noise reduction. A similar increase in _2AF' however,
increases the NR by only _ dB. This lack of proportionality

can be explained physically. Increasing the dissipation loss

factor of a group of modes acts to reduce the vibration

amplitude of these modes. However, if the total losses by the

modal group are dominated by the acoustic radiation losses,

then an increase in the dissipation loss factor will not

significantly reduce the vibration amplitude of the modes.

_lis is often the case with AF modes, which are strongly coupled

to the acoustic field. Thus, an increase in _2AF does not pro-
duce a proportionate decrease in modal vibration amplitudes so

that the noise reduction is not increased proportionately.

* A factor of 3 increase corresponds to a 5 dB increase.
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The lack of proportionality between increases in shell modal

loss factor and noise reduction is more significantly shown below

the ring frequency. Here, a factor of 3 increase in _2AF increases
the NR by only I or 2 dB. Note also that below the ring frequency

a similar increase in the interior acoustic space loss factor pro-
duces only a 4 dB increase in NR. This comes about because the

net power flow into the interior space increases significantly as
the modal energy of the space decreases due to the increased dis-

sipation losses.

It can be said, in general, that the lower the noise re-

duction the more difficult it is to increase it by increasing the
dissipation loss factors of the shell or the interior acoustic

space. But, more importantly, it can generally be said that in-

creases in acoustic space absorption are more effective in in-

creasing the noise reduction by resonant modes than increases in

structural damping.

To gain a more complete understanding of the role that

various parameters play in determining the noise reduction by

resonant modes, it is useful to obtain simple expressions that

give an approximate value for the NR in a particular case. For

example, we can find simplified expressions that give the NR

of the 0G0 shroud model within i or 2 dB of the NR plotted in
Fig. 14. For frequencies between the ring frequency and the

critical frequency, Eq. (81) can be simplified by noting that the

dissipation loss factor _2AS is much larger than the coupling
eq Thus the NR

loss factor _2AS,I' and that q3 dominates q3 "
is given approximately as

[_2AS q3 n3 ]NR (res) _ I0 lOgl0 2

_2AS,I n2AS

(90)
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in the frequency range between the ring frecluenc¥, which is

650 Hz, and the critical frequency, which _s 5000 Hz.

_quation (87) explicitly shows those parameters that play the

greatest role in dete_nining the noise reduction.

Simplifications can be made also in Eq. (83). For our

model of the 0G0 shroud, the coupling loss factor _ is
eq 2AF,I

larger than the loss factor _2AF" Again, rj3 _s dominated
by _3" Thus, the noise reduction can be expressed approxi-
mately as

NR(res) F 203 n 3 7
, (91)

_2AFI n2AS

for frequencies below the ring frequency. This equation

indicates that the structural loss factor of the shell does not

influence the NR below the ring frequency. As shown by the

more exact calculations in Fig. 14, this is not exactly true.

However, it represents a reasonable approximation.

To this point we have not considered the noise transmitted

by nonresonant modes of the 0G0 shroud. The noise reduction

due to nonresonant modes is given by Eq. (86) and Eq. (73).

The parameter values used to evaluate these equations are

listed in Table I. The noise reduction is calculated for

assumed values of _3 equal to 0.i and 0.3. The results of

these calculations are plotted in Fig. 14 and can be compared

with the noise reduction due to resonant modes. Note that

a factor of 3 _ncrease in interior absorption increases the

noise reduction 5 dB, while sn increase in the shroud dis-

sipation loss factor does not affect the noise reduction. This
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is physically explained by the fact that the nonresonant vibra-

tion amplitude is controlled by the coupling to the acoustic

field and does not depend on the shroud damping.

The total noise reduction is found by superposition of the

noise transmitted by resonant and nonresonant shell modes. Thus,

the total noise reduction is given by the lower of NR (res) and

NR (n°nres) in Fig. 14. The total noise reduction is dominated

by nonresonant modes for frequencies between the ring frequency

and the critical frequency. For other frequencies, our calcula-

tion of NR (n°nres) is not valid. It is clear from Fig. 14,

however, that the total noise reduction for these frequencies is

controlled by resonant shroud modes.

In conclusion, we can state as a general result for most

spacecraft shrouds that the noise reduction is controlled by modes

that are well-coupled to the sound field, whether they are

resonant or nonresonant. It can be further stated that increased

damping of the shroud will be less effective in increasing the

noise reduction than will the addition of acoustically absorptive

material in the interior acoustic space.

3.7 Response of the Shroud to Acoustic Excitation

Before proceeding to a general formulation of the spacecraft

panel response to acoustic excitation, we formulate the response

of the shroud. This formulation is used in Chapter 5 to predict

the amount of vibratory energy that flows into the mechanical

transmission path.

The resonant and nonresonant response of the shroud is

treated separately. As would be expected, the resonant response
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is much greater than the nonresonant response of the shroud. The

nonresonant response, however, which follows the mass law, serves

as a reference level for the total response.

Finally, in Section 3.7.3 the response of a model of the

0G0 shroud is calculated as an example.

3.7.1 Resonant Response of the Shroud

The resonant response of the shroud can be found through the

power-balance Eqs. (19a) and (19b). The remaining power-balance

equations are not needed, since we can express the internal

acoustic-space modal group energy through the calculation of

noise reduction in the preceding section. Equations (19a) and

(19b) can be solved to give

E2A F -

B2AF,I (n2AF/nl) E1 + _2AF,3 (n2AF/n3) E3 (92)

q2AF,I + _2AF,3 + q2AF

and

E2AS
= T]2AS,I (n2AS/nl) E1 + q2AS,3 (n2As/n3) E3

2AS, i + q 2AS, 3 + _ 2AS

(93)

The interior-space modal group energy in these equations is

given by

E 3 n 3 .1NR .--=--i0 -0 (94)
E 1 n I
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As in the last section, we assume that the coupling loss factors

_2AS,I and _2AF, I equal q2AS,3 and _2AF,3' respectively. With

these results and with Eqs. (21) and (22), the mean square resonant-

response spectrum is given by

Sa(2)(f) _ Co [n2AF_2AF,I
Spa(f) _" P s (2)'A2po _'2'n.... +n '"2AF, I 2AF

+ ][l+lO0.1N 1
202AS 1+0 2AS

(95)

For particular cases, Eq. (95) can be simplified. The NR by

most shrouds is greater than 5 dB in the multimodal frequency

range. Thus, the excitation of the shroud by the interior sound

field can be neglected in comparison to the excitation by the

external field. Also, the response of AS modes can usually be

neglected in comparison to that of AF modes. Thus, Eq. (95) can

be written in different frequency ranges as

(2)(f) _ _ c [n2AF q2AF,I ] ,
for f<fr or f>fc ' (96a)

and

(2)(f) _ o
s : o I_As _2As,1], for fr<f<fc
(1)(f) _ (2) L2_ +_

Sp s A2P o 2AS, I 2AS

(96b)
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Note that, if the coupling loss factor is much greater than the

dissipation loss factor, then the shroud response does not

depend on its dissipative damping but is controlled by its

acoustic radiation losses.

3.7.2 Nonresonant Response of the Shell

For the frequency range between the ring frequency and the

critical frequency, the composite response of nonresonant modes

follows the random-incidence mass law. The mean square non-

resonant velocity spectrum is given in Eq. (70). It can be

directly used to obtain the nonresonant acceleration spectrum:

= (2) 2 I (2) tan_iC_p s 2)

Sp(f) ] "2 oCo

.(97)

The second term in this equation is a correction to account for

radiation loading of the structure. Most structures radiating

into air are sufficiently heavy that the correction term is

unimportant at the frequency range being considered. Thus, we

can express an approximation of the forced, nonresonant response

as

s (f) 2
a

Sp(f) Ps

(98)

The mass-law response predicted by Eq. (98) represents a limit

in that the addition of structural damping cannot reduce the

total response of the structure below this level.
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3.7.3 Response of a Model of the 0G0 Shroud

As an example of the general formulation in the previous two

sections, we calculate the response of a model of the 0G0 shroud.

This calculated response is used in Chapter 5 to predict the

amount of energy transmitted along the mechanical path to a model

of the 0G0 spacecraft.

The predicted response in this section may not be accurate

for the actual 0GO shroud, since the disspation loss factors of

the 0G0 shroud are not known. The calculations indicate, however,

that in certain frequency ranges the dissipation loss factors do

not control the response of the shroud. For these frequencies,

reasonable agreement is expected between the predicted and actual

response levels of the 0G0 shroud.

The resonant response of the 0G0 shroud model is given by

Eqs. (96). These equations require that the noise reduction be

greater than 5 dB. Reference to Fig. 14 shows that this condition

is satisfied by the 0G0 shroud.

The predicted response levels in dB re I g for two values of

the loss factor q2AF and _2AS are presented in Fig. 15. These

levels are obtained from Eq. (95) by the relationship

AL 2 - SPL I = I0 lOgl0

s (2)(f) s (l) (f)
a I0 log P

9802 0. 00022 '
(99)

where AL is the acceleration level re I g, SPL is the excitation

sound pressure level re 0.0002 _bar, and S and S are in cgs
-- a p

units. Below the ring frequency and above the critical frequency,
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the predicted acceleration levels are greatly increased due to

the presence of AF modes in the shell. Note that a factor of 3

increase in the structural loss factor reduces the response

5 dB for ail frequencies, except below the ring frequency. In

this frequency range, the AF modal responses are radiation-loss

controlled so that a factor of 3 increase in damping does not

reduce the response proportionately.

Since the shroud response is not strongly dependent on the

dissipation loss factor it is expected that the predicted

response will be reasonably accurate for the actual shroud.

3.8 Response of the Spacecraft Panels to Acoustic Excitation

In this section, we calculate the response of the spacecraft

panels to acoustic excitation by the interior sound field. This

calculation is combined with the calculation of noise reduction

in Chapter 5 to predict the response of the 0G0 spacecraft panels

to acoustic excitation of the shroud. In the present section,

we treat resonant and nonresonant response separately.

3.8.1 Resonant Response of the Spacecraft Panels

The resonant response of the spacecraft panels can be

calculated through the power-balance Eqs. (19d) and (19e).

These equations predict that

E4AF = q4AF,3 n4AF E3

q4AF,3 + q4AF n 3

(!oo)

and
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_AS_3 n4AS E3 ._'4AS = ' ' (lOl)
4AS, 3 + __AS n 3

In the flat spacecraft panels, all modes below the critical

frequency are AS, while all modes above this frequency are AF.

Thus, either Eq. (!00) or (I01) gives the total energy of resonant

modes in the panels. _Using Eqs. (21 - 23), the spectral accelera-

tion of the panel is

Sa(4)(f)= _Con_ E4

Sp A4D o

, (lO2)

where E 4 equals E4AF, above the critical frequency, and E4A S

below this frequency.

3.8.2 Nonresonant Response of the Spacecraft Panels

The nonresonant response below the critical frequency of the

spacecraft panels is given by the mass-law response, Eq. (98).

As in the case of the shroud model, the radiation loading can be

neglected, so that the forced response of the spacecraft panels

can be written as*

Sp(3)(f)
(lO3)

The panels are excited on both sides by the sound field, so

that the response predicted by Eq. (99) must be multiplied by
two.
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This response represents the smallest response that can be

achieved by the addition of panel damping.

3.8.3 Response of a Model of the 0G0 Spacecraft Panels

As an example of the general formulation of the spacecraft

panel response, we calculate the response of a model of the 0G0

spacecraft to excitation by the interior sound field. The

spacecraft model is shown in Figs. i and 16, and is described

in Section 3.1. The parameters describing this model are listed

in Table I.

The resonant panel response is given by Eq. (102). The

loss factors and modal densities required to evaluate this ex-

pression have been calculated from the equations in Section 3.4.

These parameters are plotted in Figs. 12 and 13. The critical

frequency of the 0G0 spacecraft panels is at 500 Hz, and is a

factor of ten below the shroud critical frequency. This large

difference occurs because the spacecraft panels are sandwich

panels and have a higher bendlng-stiffness-to-weight ratio than

the shroud. Since the critical frequency of the 0G0 panels is

10w, the panel response is radiatlon-loss controlled over a

large range of frequencies. The resonant response predicted

by Eq. (102) is plotted in Fig. 16, for two values of the dis-

sipation loss factors _4AF and _4AS" In the range 200 to

2000 Hz, the response is reduced only slightly by a factor of

3 increase in the dissipation loss factor. For this reason, the

predicted response of the panels to excitation by the interior

noise field should be in reasonable agreement with the response

of the actual 0G0 spacecraft panels.
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The nonresonant mass-law response of the 0GO panel models is

given by Eq. (104), and is only a function of the panel surface

density. This response, which is plotted in Fig. 16, can be com-

pared with the resonant response. Because of the high bending-

stiffness-to-weight ratio of the spacecraft sandwich panels, the

resonant response is very much greater than the mass-law response.

A similar result was found below the ring frequency for the shroud

response. In that case, the bending-stiffness-to-weight ratio was

high because of curvature of the shroud wall. In general, panel

structures with high bending-stiffness-to-weight-ratios will have

response levels significantly higher than the mass-law predictiom.

This calculation concludes our study of the acoustic path.

The particular calculations developed in this chapter are used in
Chapter 5 to predict the spacecraft response to a sound field

exterior to the shroud. First, however, we analyze the trans-

mission of vibratory energy in the mechanical transmission path.
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4. ANALYSIS OF TKE MECHANICALTRANSMISSION PATH

In this chapter, we find the response of the spacecraft
panels to "_ .......v__ _e_gy transmitted along the mechanical

transmission path. The structural elements of this path are

shown in Figs. 1 and 3. These elements are generally similar

to those of the 0G0 spacecraft assembly. However, the

structural parameters that describe them are left fairly general

in the formulation, so that the results can be applied to other

spacecraft assemblies. As an example, the spacecraft panel

response is computed for a model of the OGO spacecraft assembly.

The discussion and calculations of this chapter closely

follow those of Chapter 3. Thus, the background and validity of

the prediction methods is not discussed in detail. The trans-

mission of energy by resonant and nonresonant mounting truss

motions is considered separately.

The first step in the analysis is to replace the elements

of the actual spacecraft assembly with idealized models. These

models are described in Section _.l.

4.1 Detailed Description of the Mechanical Path Elements

The structural elements that make up the mechanical trans-

mission path are shown in Figs. l, 3, 17, 18, and 19. The

exciting sound pressure field, element !, and the shroud model,

element 2, have been discussed in Section 3.1.

The spacecraft, element 4 in Fig. 3, is modeled in our

theoretical analysis by four flat panels in an open-box con-

figuration. The box is open at the top and bottom. The para-

meters required to describe the spacecraft panels are the total
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(4) the bendingpanel area A_, the panel surface mass density Ps '

radius of gyration _4' and the longitudinal wavespeed c_ (4) .

The modeling of the spacecraft by an open box of panels

allows certain assumptions that would not be possible with a closed

box. The open box is very responsive to torsional excitation

around the axis of the connected edges. Thus we can neglect the

mounting-truss motion that does not excite the box by torsion

around this axis. The closed box, on the other hand, responds

equally well to all excitations at the corners. Over all, however,

it is significantly les____sresponsive to excitation by the mounting

trusses than is the open box. The method of analysis in this

report would be valid for the closed box, but the resulting pre-

dictions of spacecraft panel vibration due to excitation by the

mounting trusses would not be the same as the predictions obtained

in this report.

Element 5, the ring frame, provides the principal support

for both the spacecraft and the shroud. We have modeled this

element
circular channel beam with radius a5, lineal mass

bY(5) wavespeed for flexure normal to the shroud cf (5)
density p_ ,

(5) The beam is connected along its
and torsional wavespeed ct .

length to the base of the shroud and is, therefore, intimately

coupled to its motion. Motion in the plane of the shroud wall is

very small and can be neglected relative to the torsional and

transverse flexural motions. The flexural wavespeed is given by

where _ is the radian frequency, c_ (5) is the longitudinal wave-

speed along the beam, and _f(5) is the radius of gyration for
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flexure normal to the shroud. This radius of gyration can be

expressed in terms of the channel beam dimensions as

1/2

_f(5) = [w(y-t/2)2 + (x3+y3)/3]
a+w

(lO5)

where x = a-y and y = " "- ""_a2+wt)/2(a+w).

is given by

The torsional wavespeed

ct(5) --cs , (!o6)

where c s is the shear wavespeed along the beam, K is the stiff-

ness constant for torsional motion, and J is the polar moment
28

of inertia.

The mounting trusses, element 6 in Fig. 3, are modeled by

four straight channel beams with lengths _6' surface mass

density ps (6), torsional wavespeed ct(6) , and flexural wave-

speed corresponding to flexure in the plane of the channel

base, cf (5) (see Fig. 19).

Because of the open-box construction of the spacecraft,

flexure in the plane of the channel beam legs (the vertical

plane) will induce negligible motion in the spacecraft panels--

negligible, that is, compared to the motion induced by torsion

and by flexure in the channel base plane. Therefore, in the

analysis, we can neglect the vertical component of flexure.

The four mounting trusses are connected rigidly to the

ring frame and to the corners of the spacecraft. In Figs. 17
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and 19, the configuration of the spacecraft and ring frame relative

to the mounting trusses is shown. Each mounting truss makes an

angle of 0._ radians, or approximately 25 ° , with the axis of the

spacecraft.

The mounting trusses for an actual spacecraft assembly may

be more complicated. For example, each mounting truss for the

0G0 spacecraft is a double beam (wishbone) connection between the

corner of the spacecraft and the ring frame. We can model the

double-beam truss by a single beam, provided that certain pro-

perties of the single beam truss--e.g., the torsional rigidity,

the bending rigidity normal to the plane of the wishbone, and

total mass--are chosen so as to be equal to that of the double

beam truss.

The four structural elements of the mechanical transmission

path form a connected set of multimodal systems. Thus, the next

step in predicting the response of the elements by statistical

energy analysis is the division of the modes in each element into

groups of similar modes.

4.2 The Division of Modes of Each Element into Groups of

Similar Modes

In our analysis of the acoustic path, it was necessary to

divide the modes of the shroud into four groups. For the analysis

in this chapter, however, this is no longer necessary, since all

modes in the shroud are intimately coupled to both torsional and

bending modes in the ring frame. Also, unlike the acoustic path

analysis, nonresonant modes in the shroud can be neglected, since

their energy is small and they are not more strongly coupled to

the ring frame than are the resonant modes.
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The modes of the ring frame and the mounting trusses must

be divided into several groups. An appropriate grouping for a

particular frequency band is shown in Fig. 20. The modes of the

ring frame _nd mounting t_ass have been divided into resonant

and nonresonant torsional modes and bending modes corresponding

to bending in the vertical and horizontal planes. Also, the

spacecraft panels have been divided into resonant and nonresonant

modes.

We can now make a number of simplifications that allow

power-flow interactions between certain sets of modes to be

ignored or simplified. Motion of the ring frame in the vertical

direction is inhibited by its connection to the shroud. Thus,

we will not consider ring frame modes of flexure in the vertical

plane, since these are restrained to have very small motion.

The spacecraft model that we have selected is very re-

sponsive to torsion around the vertical axes of the box. Such

a torsion results from both torsional waves and flexural waves,

with displacements parallel to x I in Fig. 21. Both of these

motions are generated by flexure of the ring frame. Torsional

waves in the ring frame generate flexural displacements in the

x2, x 3 plane, which will not produce axial torsion on the space-

craft. We therefore neglect torsional modes of the ring frame

and bending modes in the x I direction of the mounting trusses,

since the spacecraft panels are not excited by these modes.

In our consideration of the power flow, we allow the

torsional- and bending-wave modes in each element to be coupled.

This is a realistic allowance, since bending and torsional

motions in beams with complicated cross sections are usually

coupled by stiffness or inertial forces.
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The paths of power flow that we consider in the statistical

energy analysis are shown in Fig. 20. In Section 4.3, the power

flow along these paths is formulated in terms of the modal group

energies. In this way, expressions can be obtained for the

acceleration spectrum of the elements in the mechanical path.

4.3 Formulation of the Power-Balance Equations

The modal groups outlined in Section 4.2 are all similarly

coupled to the other groups of modes and are similarly damped.

Thus, we can predict their time-average total energy in fre-

quency bands, by using the fundamental power-balance equation,

Eq. (17). In our formulation, we assume that the energy level in

the shroud is known and is given by the results of Chapter 3. In

making this assumption, we have assumed that the power-flow inter-

actions between the shroud and the ring frame are small in com-

parison to those between the shroud and the acoustic fields and

the energy dissipated by the shroud. This will be true in all

cases in which the ring frame and mounting trusses are not highly

damped.

The power-balance equations can be simplified by assuming

that the torsional and flexural modes in the mounting trusses

are strongly coupled. This assumption is appropriate in most

cases, since boundary conditions and complex cross-sections

strongly couple these two sets of modes. Under the condition

that these modal groups are strongly coupled, their modal

energies will equipart:

Et(6) Ef (6)
, (lO7)
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(6) (G)
where nt and nf are the modal densities for flexural and

torsional modes in the mounting truss. _ne case of equipartition

of modal energy allows two groups of modes to be considered

together, even though they are not similarly coupled to the other

groups of modes. The loss factors for the over-all group will

be the average loss factor of each mode in the group, e.g.

(6) (8)
nt _6t,% + nf _6f_% (108)

n6, % = nt(6 ) + nf (6) "

We now obtain a set of power balance equations similar to those

obtained for the acoustic path, in Chapter 3. Power balance on

the resonant flexural modal group in the ring frame gives

q5,6 n5 n6

H

5;6NR _ 0 ,
c0

(109a)

where "5" refers to the flexural resonant modal group in the

ring frame, "6" refers to the composite flexural and torsional

resonant group in the mounting trusses, and HS,6N R is the flow

to nonresonant mounting-truss modes. In this equation, n 6 is

the sum of resonant modes in all four mounting trusses. Power

balance for the mounting-truss resonant modal group gives

_5,6 n5 - - q6,% n6 _66 n%
n6E6 = o . (109b)

Power balance for the spacecraft panels gives

u_



 6,4n6 + - q4 E4 = 0 , (109o)

where H6NR, _ is the power flow from nonresonant mounting-truss

modes. This set of equations is used in Sections 4.6 and 4.7 to

predict the spectral acceleration of the elements in the mechanic_

transmission path. As for the acoustic path, flow of energy in

resonant and nonresonant modes is considered separately. First,

however, we calculate the necessary coupling loss factors, dissi-

pation loss factors, modal densities, and nonresonant power flow

needed to evaluate the power-balance Eqs. (109).

4.4 Calculation of the Modal Densities and Loss Factors

Our next task is to evaluate the modal densities and loss

factors that appear in Eqs. (109). Fortunately, many of these

parameters have already been found by other authors and appear

in the literature. As in the case of the acoustic path elements,

we do not find the exact parameters for any one system but,

rather, we find expressions that are valid for an ensemble of

similar structures which vary only in fine detail. In calculating

coupling loss factors, we calculate the power flow between two

infinite structures. We hypothesize that the average coupling

loss factor between a mode in one element and a mode in the

other element is given by this calculation.

4.4.1 Calculation of the Modal Densities

To evaluate the power-balance equations, we must know the

torsional- and bending-wave modal densities in the ring frame

and the mounting trusses. These modal densities for a straight
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beam are given in Ref. 15 and in our notation are

and

2_
nt(f) = _t " (IIi)

The above equations do not take into account the curvature of

the ring frame. 0nly the lowest-order mode, however, correspond-

ing to uniform radial motion is appreciably affected by curva-

ture. Thus, the above equations are valid expressions for the

modal densities of both the ring frame and the mounting trusses.

The modal densities of the shroud and spacecraft panels
were calculated in Section 3.4.6.

_._.2 Calculation of the Shroud to Rin_-Frame Coupling

Loss Factor

The ring frame is intimately attached along its full length

to the shroud. Thus, we can presume that its coupling loss

factor to the shroud will be large. More specifically, we

presume that the ring frame to shroud coupling loss factor

exceeds both the coupling loss factor to the mounting trusses

and the dissipation loss factor

h5,2 >> _5,6 + h5
(112)
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4.4.3 Calculation of the Rin$-Frame/Mountin$-Truss

Coupling Loss Factor

The required ring-frame/mounting-truss coupling loss factor,

_5,6" is the average coupling loss factor between flexural modes

in the ring frame, with displacements normal to the shroud and

flexural and torsional modes in the mounting trusses.

The vibrational field of the ring frame can be simulated by

a number of traveling waves in an infinitely extended ring frame.

The sum of the mean square amplitudes of the traveling waves in

the infinite structure is related to the mean square displacement

and time-average total energy of the ring frame by

ty512 = ,
= 2M5

where ly512 is the sum of the mean-squared complex amplitude

magnitudes of the traveling waves, <x_> is the space-time mean

square displacement of the ring frame, M 5 is the total mass of

the ring frame, and E 5 is its time-average total energy.

Our method of calculating _5,6 is to find the power flow from a

traveling wave in the infinitely extended ring frame of complex

amplitude Y5 to a semi-infinite mounting truss. The coupling

loss factor q5,6 is then given by

_5,6

45, 6 =
E 5

(114)
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where _5,6 is the power flow from the traveling wave on the
infinite ring frame to the semi-infinite mounting truss*, and

E5 is the time-average total energy in the ring frame
corresponding to this traveling wave amplitude.

The infinite ring frame has an internal impedance as a
source of excitation for one semi-infinite mounting truss. This

impedance is the ratio of moment to angular velocity parallel

to the spacecraft axis at the point of its attachment to the

mounting truss. In terms of the ring frame parameters, assuming
-i_t

e time-dependence, this source impedance is 29

2 2 -I (115)z5 = 2(1 - i)p_5 _f5 c_5 cf5

Ring-frame flexure will excite both torsional and flexural

waves in the mounting truss. The ratio of the complex moment

amplitude at the end of the truss to the resulting angular

velocity amplitude is 30

z6t = P_6 _¢6 ct6 (116)

where _¢6 is the polar radius of gyration of the mounting-truss

cross section. The mounting-truss flexural impedance is taken

to be the ratio of moment applied to a pinned end of the semi-

infinite truss to the resulting angular velocity31:

= 2 -Iz6f (l-i)p_6 _f62 c_6 cf6 (117)

* The factor of four arises since there are four mounting trusses

attached to the ring frame.

93



The total load impedance that the mounting truss presents to the

ring frame at the attachment point is derived from z6t and Z6 f.

The Junction between the ring frame and mounting truss is re-

constructed in Fig. 21. The ring frame is constrained to have

flexural displacements in the x 2 direction only.

Let _t and _f be the angular velocities due to mounting-truss

torsion and flexure at the junction, as shown in Fig. 21. Since

the ring frame will not allow angular velocity in the x 2 direction

at the Junction,

_f cos8 = _t sin8 .
(118)

The axial (or x3) component of angular velocity at the Junction

is

_3 = 9f sin8 + _t cos8
(119)

The torque producing this axial angular velocity at the Junction

is

T3 = T t COS8 + Tf sin8
(120)

where Tt and Tf are related to the appropriate angular velocities

by the impedances expressed in Eqs. (116) and (117). One has,

therefore,

T 3 = _tZt cos8 + _fZf sin8
(121)
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We define the ratio of T 3 to _3 as the mounting-truss load

impedance Z 6 :

Z6 = (z6t + z6f tan2@)(l + tan2@) -I (122)

We see that this expression is correct, since the impedance

obtained in the limits of e = 0 and 8 = _/2 is correct.

The power transferred from the ring frame to one infinite

mounting truss can be expressed in terms of these impedances

o o is the axial component of angular velocity of the
and _5" _5
ring frame at the Junction with the mounting truss detached,

and is expressed as

2 2 2

la l = 2 kf5 lysl ,

where kf5 is the flexural wavenumber, and Y5 is the incident-wave

amplitude. The power transferred is obtained by considering

the equivalent circuit for the junction (Fig. 22):

n5, 6 = _ z5 + z6

2

_6 , (12#)

where

R6 _ Re (Z6)
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and H_ r is the power transferred to the truss Placing Eqs (124)
_,o " "

and (113) into Eq. (114), we get the desired coupling loss factor

8kf52 Z 5 12
_5,6 = _5 z5 + z6 R6 . (125)

If Eqs. (115) and (122) are used, all the quantities contained in

Eq. (125) can be calculated from basic structural parameters.

4.4.4 Calculation of the Mounting-Truss/Spacecraft-Panel

Coupling Loss Factor

The coupling loss factor between the mounting trusses and the

spacecraft panels is a composite loss factor for coupling between

both torsional and flexural modes of the mounting trusses and the

flexural modes of the spacecraft panels. Our method of calculat-

ing this coupling loss factor is similar to that used in

Section 4.4.3. The mounting trusses and the spacecraft panels

are replaced by semi-infinite structures and the power flow from

traveling waves in the mounting trusses to the spacecraft panels

is calculated. The traveling-wave complex amplitude magnitude

corresponding to flexural modes in the trusses is given by

2 4_f6
ly61-- , (126)

M6m

where Ef6 is the time-average total energy of the flexural

modes in the four trusses, and M6 is the total mass of
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the four trusses. The traveling-wave complex amplitude magni-

tude corresponding to torsional modes is

ig_t6 12 4Et6 2 , (127)
M6 _¢6

where _t6 is the torsional wave angular velocity complex ampli-

tude, Et6 is the time-average total energy of the torsional

modes in the trusses, and _ is the polar radius of gyration of

the trusses. The coupling loss factor is given in terms of the

power flow between the semi-infinite structures as

_6,4 -
E6

, (128)

where H6, _ is the power flow from all four trusses to the panels,

and E 6 is the torsional and flexural time-average total energy in

the trusses.

Since we have allowed the torsional and flexural waves to

be intimately coupled, the energy of each mode will be the

same; i.e.,

Et6 Ef6- ( 29)
nt6 nf6 "

where nt5 and nf5 are the modal densities of torsional and

flexural modes. It follows that the total time-average energy

is
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E6 = Et6 + Ef6 = Ef6 <i + nt6 ). (130)
nf6

At the Junction between the mounting trusses and the space-

craft, the source impedance for torsion around the spacecraft axis

is Z6 and is given by Eq. (122). The load impedance Z_ of the

panels is taken to be that of a plate edge for a no_nal moment.

This impedance, for the semi-infinite panel, has been computed

by Eichler. 32 His expression is

Z 4 -- 2 A2+B 2
kf_

(131)

where A = 0.189, B = 0.275 In (kf_ w/2.5), kf_ is the flexural

wavenumber, and w is the half-width of the mounting truss (see

Fig. 19). The power transferred from one mounting truss to the

panels is given by

= i
2 z6

z 6 + z_

2

R4 , (132)

where H6, _ is the power flow from all four trusses to the panels,

_ is the total axial component of the truss angular velocity

when it is pinned at the junction but the spacecraft is discon-

nected, and R_ is the real part of Z 4. The total mean square

axial component of angular velocity is the sum of components due

to flexure and torsion in the mounting trusses:
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I I o 2 i 2 2 2 i 2 2e_61 = _ kf6 _ ly61 sin28 + _ l_t61 cos . (133)

Placing Eq. (133)in Eq. (132)and using Eqs. (126), (127),

(130), and (128) to define _6,_' we arrive at

8 kf62 R4 Z 6

_6,_ = _M 6 Z 6 + Z_

2 sin28 ÷ nt6 c°s28

nf6 kf62_¢_6

I + nt6/nf6

(13_)

The calculations of this coupling loss factor are clearly

tedious and require the use of a digital computer.

_.4.5 Estimation of the Dissipation Loss Factors

At the present time, we must experimentally determine the

internal loss factors N4' NS' and N6 that describe the dissipa-

tion in the spacecraft, the ring frame, and the mounting truss.

Some recent gains have been made in the estimation of internal

damping of structures, 35 but they are not sufficiently advanced

so that we can confidently use these estimates for engineering

predictions. No experimental data on the 0G0 structure was

available for our analysis; therefore, we estimated the dissi-

pation loss factors on the basis of past experimental data from

similar structures. The estimate that we obtained is

-2 (135)
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4.5 Calculation of Nonresonant Vibration Transmission

In Section 4.3, we formulated the vibration transmitted from

the ring frame to the spacecraft by resonant motion of the four

mounting trusses. In this section, the vibration transmitted by

nonresonant motion of the mounting trusses is formulated. In

this formulation, the mounting trusses are represented as "pure

stiffness elements." Thus, the three-element system (ring frame,

mounting truss, and spacecraft) can be analyzed as a two-element

resonant modal system (ring frame and spacecraft) wlth stiffness

coupling, so that the fundamental result for power flow between

two groups of resonant modes, Eq. (12), can be used.

In representing the mounting trusses as "pure stiffness

elements," we are neglecting the mass-controlled, nonresonant

motion of the mounting trusses. This idealized situation is in

direct contrast to the case of acoustic noise transmission through

the shroud, where only the mass-controlled motion was considered.

It seems intuitively clear, however, that the bending and

torsional modes of the mounting trusses will not respond signifi-

cantly when excited at frequencies well above resonance.

The modal stiffness of a beam in bending or in torsion is,

in general, different for each mode; therefore, it is not clear

what value of coupling stiffness should be used in our formu-

lation. We have chosen to use the static stiffness of the

mounting trusses In bending and torsion. This choice is equi-

valent to considering the mounting trusses as massless.

The power flow from the rlng frame to the spacecraft panels

through nonresonant modes of the mounting trusses is given by
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] (136)

To calculate the ring-frame/spacecraft coupling loss factor

_5,4' we follow the procedure used in Sections 3.4.3 and 3._._.

First, we calculate the time-average power transferred from an

infinitely long ring frame to semi-infinite spacecraft panels

when a bending wave traveling along the ring frame impinges on

the ring-frame/mounting-truss junction. The desired coupling

loss factor is then calculated from the relationship

_5,6NR,_ = _6_R,_/_ _5 " (137)

where _6NR,_ is the power transferred by all four mounting

trusses_ and E 5 is the time-average total energy associated

with the incident bending wave in a section of the infinite ring

frame that has the same length as the finite ring frame.

- 4kf52 _5 ' (1BS)

o is the complex angular-
where kf5 is the flexural wavenumber; _5

velocity amplitude at the ring-frame/mounting-truss Junction

when the mounting truss is detached, and M 5 is the total mass

of the ring frame.

We now calculate the tlme-average power flow from the ring

frame to the spacecraft when a traveling flexural wave with
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o impinges on the ring-frame/complex angular-velocity amplitude _5
mounting-truss Junction.

With the moment and angular-velocity vectors defined as in

Fig. 23, the constitutive relations for the ring frame, mounting

tz_uss, and spacecraft are given by Eqs. (139a), (139b) and (139c),

respectively:

T = Z5_5 i , (139a)

K
T = i_(a5 - _6) , (139b)

T = zsn$ , (139c)

i

where _5 is the angular velocity induced in the ring frame by

the reaction moment _, _5 and _6 are the angular velocity com-

ponents along the spacecraft axis at the ring-frame end and the

spacecraft end of the mounting truss, K is the static stiffness

of the mounting truss, and 9_ is the angular velocity at the

spacecraft corner. The moment impedance Z 5 of the ring frame is

given by Eq. (115) and the moment impedance Z4 of the spacecraft

is given by Eq. (131). The static stiffness K of the mounting

truss is calculated later in this section.

Geometric compatibility for the ring-frame/mounting-truss

junction and the mounting-truss/spacecraft Junction requires

that
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O

_5 = _5 - _51 '
(140a)

and

c6 = _4 • (14ob)

Combining Eqs. (138) and (140) yields the spacecraft angular-

velocity amplitude 94 , in terms of the incident travel_ng-wave
o

angular-velocity amplitude 95 :

KZ5 (141)O

_4 = KZ 5 + KZ 4 + i_ Z4Z 5 95 "

The time-average power flow into the spacecraft from one mounting

truss is

Z6NR;4 [Te-i_t -i_t *
4 = <Re ] Re[94e ] >t = Re[vi_4 ]/2 , (142)

where H6NR, 4 is the power flow from nonresonant motion of all.

four mounting trusses and _% is the complex conjugate of _4"

Using Eqs. (139c) and (141) in Eq. (142) yields the desired

expression for the time-average power flow:

n6NR,4 1 KZ5 12 o124 = [ K(Z4 + Z5)+ imZ4Z5 Re[Z4] I_5 .
(143)



Equation (143) can be obtained also from the "equivalent circuit"

shown in Fig. 24. The coupling loss factor _5,6NR,_ follows from
Eqs. (137), (138), and (143):

KZ5 12K(Z4 + Z5) + ieZ4Z 5 Re[Z4]
(144)

To conclude our formulation, we now calculate the static

stiffness K. The angular-velocity amplitude at each end of the

mounting truss can be resolved into a flexural and a torsional

component, as shown in Fig. 21. The moment at each end of the

truss can be resolved similarly. The bending moment Tf and

flexural components of the angular velocities at the ring-frame

end, _f(5), and at the spacecraft end, _f(6), are related by

Kf (5) nf(6): (nf - ) , (145)

where Kf is the static stiffness of the truss in pure bending

and is given by 33

EA6_f6 2
(146)

Kf = _6

where E is the modulus of elasticity of the mounting truss

material, A6 is the mounting truss cross-section area, gf6

is the radius of gyration of the mounting truss, and _6 is the

length of one mounting truss.
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The torsional moment Tt and the torsional components of the

angular velocities at the ring-frame end, 9t(5), and at the

spacecraft end, _t (6), are related by

Kt (5) (6)
Tt = T_ (_t - _t ) " (147)

where K. is the static stiffness of the truss in pure torsion

given b_ 33

Gbt 3

K t = 3_ 6 (148)

where G is the shear modulus of the truss material, b is the

length of the truss cross section, (see Fig. 19), and t is the

thickness of the truss cross section.

Equation (148) is actually the torsional stiffness of the

rectangular section obtained by straightening out the truss

cross section shown in Fig. 19. This calculation is Justified

by Prandtl's membrane analogy, 3_ which shows that the torsional

stiffness for thin, unclosed cross sections depends only on the

length and thickness of the cross section.

The mounting-truss stiffness K in combined bending and

torsion can be calculated in the same manner as the mounting-

truss impedance, which is calculated in Section 4.4.3. The

expression

K = (Kt + Kf tan2@)(l + tan20) -I (1%9)

lO5



is identical in form to Eq. (122).

The truss stiffness given by Eq. (149) can be used in

Eq. (I_), for the coupling loss factor _5,_' and, finally, the

power flow due to nonresonant mounting truss motion is given by

4.6 Formulation of the Ring Frame to Shroud Response Ratio

In this section, we use the power-balance Eqs. (109) to pre-

dict the ratio of the ring-frame/shroud mean square acceleration

spectra.

We note from power-balance Eq. (109a) that, if the ring-

frame/shroud coupling loss factor _5,2 is sufficiently large,

modal energy equilibrium will exist between the shroud and the

ring frame:

E 2 E 5
-- -- . (150)
n2 - n 5

As discussed in Section 4.1, the ring frame is intimately

attached along its full length to the shroud. Thus, we can

presume that its energy coupling to the shroud will be large

enough that Eq. (150) is a valid estimate of the ring-frame

flexural modal group energy.
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The modal densities n 2 and n5 are given by Eqs. (35) and

(II0), respectively, while the total modal group energy in the

structural elements is related to their mean square acceleration

spectra by

(1)(f) 2_2Ei
Sa = MiA , (151)

where E i is the time-average total energy of the structure, M i is

its total mass, and A is the bandwidth of excitation. Thus, we

can express the ratio of the ring-frame mean square acceleration

spectrum to the shroud mean square acceleration spectrum as

Sa(5) M2 n5(f)
(152)

As an example, we calculate the acceleration spectrum ratio

between models of the 0G0 ring frame and shroud. These models

are described in Section 3.1 and 4.1, and parameter values re-

presenting them are given in Table I. The modal densities of

these models have been calculated from Eqs. (35) and (II0) and

were used to evaluate Eq. (152). The predicted response ratio

for the 0G0 ring frame and shroud is plotted in Fig. 26. This

prediction, of course, is limited to the multlmodal frequency

region in which many modes resonate. We have somewhat arbitrar-

ily required at least two modes per octave band. Because the

modal density of the shroud is much larger than the modal

density of the ring frame, its acceleration spectrum is also
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much greater than that of the ring frame. In addition, the

response ratio decreases with frequency as a direct consequence

of the difference in modal density between the one-dimensional

ring frame and the two-dimensional shroud.

In the general formulation of the ring-frame response, we

disregarded the nonresonant modal response. Based on a mass-law

behavior, the forced nonresonant response of the 0G0 ring frame

is approximately 3 dB below its resonant response for all fre-

quencies, so that neglect of the nonresonant response is warranted.

In calculations for other spacecraft assemblies, the forced re-

sponse of the ring frame should be calculated to make sure that

it can be neglected.

4.7 Formulation of the Spacecraft-Panel/Ring-Frame

Response Ratio

In this section, we calculate the ratio of the spacecraft-

panel acceleration spectrum to the ring-frame acceleration

spectrum. This calculation is combined with the calculation of

the ring-frame/shroud response ratio in Chapter 5, in order to

predict the response of the spacecraft panels to energy trans-

mitted by the mechanical transmission path. In calculating the

spacecraft-panel/rlng-frame response ratio, we use the power-

balance Eqs. (109). Power flow due to resonant and nonresonant

motion of the mounting trusses is considered separately.

The ratio of spacecraft-panel time-average total energy

to ring-frame energy due to power transmitted by resonant truss

motion is calculated from the power-balance equations, with

H6NR, _ equal to zero:
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where the loss factors 45,6 and T16,4 are related by the
symmetry relati on

(153)

n6 46,5 = n5 45,6 (154)

The modal densities and loss factors required to evaluate this

equation were found in Section _._. The mean square acceleration

spectra of the panels and the ring frame are related to the

total energy in the elements by Eq. (151) so that the response

ratio due to resonant-mode energy transmission is given by

sa(_)(f)= _ _

Sa(5)(f) M_ _5
, (155)

where E4/_ 5 is given by Eq. (153) and M% and M 5 are the total

masses of the spacecraft panels and ring frame, respectively.

If the mounting truss has very light damping and is well-

coupled to the ring frame and the spacecraft, then we can

assume

46 << 46,5 + 46, _ . (156)

In this event, Eq. (153) simplified to
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E_) res. q5 6 _6 4= _ _ • (157)
n_ _6,5 + _ _6,_ + _6,5 _,6

To calculate the response ratio due to energy transmitted by

nonresonant truss modes alone, we set equal to zero the input

power from the ring frame to the resonant mounting truss modes;

to do this we set E5 equal to zero in the power-balance equations.

Then, we solve for E_ in terms of the nonresonant mode power

flow H6NR, 4.

_6NR_4 (158)E4=

_%+_4,6 - _6,5+_6,4+q6

Equation (158) expresses a power balance between power into the

panels from the nonresonant truss modes, power dissipated in the

panels, and power lost to the resonant modes of the trusses. In

most cases, the second and third bracketed terms in Eq. (158),

which account for power lost to the resonant mounting truss modes,

can be neglected. Then, Eq. (158) becomes

E_ = _6NR_4
_4 " (159)

In Section 4.5 the power from nonresonant modes was found as

H6NR,4 = e_5,6NR,4 n5 [ E5 E%n 5 n 4 ] •
(136)
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Using this equation in Eq. (158) and solving for the ratio

E4 to E5 gives

E _ nonres. _5_6NR_
_55 - _4,6NR,5 + _

(16o)

where _5,6NR,_ and q%,6NR,5 are related by the symmetry relation,

Eq. (154), and _5,4 is given by Eq. (144). The desired spectral

response ratio is found by using Eq. (152) to relate these

energies to the mean square acceleration spectra.

4.7.1 Calculation of the Spacecraft-Panel/Ring-Frame

Response Ratio for a Model of the 0G0 Assembly

As an example, we calculate the response ratio of the

spacecraft panels to the ring frame for a model of the 0G0

assembly. The required modal densities and loss factors for

this assembly have been calculated from the results of Section

4.4. The loss factors are plotted in Fig. 25. These parameters

can be used to evaluate Eqs. (153) and (159) for the ratios of

the panel response to the ring-frame response due to resonant

and nonresonant motions of the mounting trusses. These ratios

are plotted in Fig. 26. Note that the responses due to

resonant motion and nonresonant motion are comparable. At high

frequencies, the response due to resonant motion dominates,

while at low frequencies the response due to nonresonant motion

dominates.

This concludes our study of the mechanical transmission

path. In the next chapter we compare the spacecraft-panel

response due to transmission of energy by the acoustic path

and the mechanical path, for a model of the 0G0 spacecraft

assembly.
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11 COMPARISON OF THE RESPONSE OF A MODEL OF THE 0GO

SPACECRAFT TO ACOUSTIC EXCITATION AND

MECHANICAL EXCITATION

In the first four chapters of this report, we developed a

general method for predicting the response of spacecraft assembly

elements to excitation by an external sound field. To illustrate

the method, response ratios of individual elements in a model

spacecraft assembly were calculated. In this chapter, we com-

bine these individual calculations An order to predict the

response of the model spacecraft panels to the external sound

field. The response due to energy transmitted by the acoustic

and mechanical transmission paths is considered separately.

We consider a model of the 0G0 spacecraft assembly, its

elements are discussed in Sections 3.1 and 4.1 and are illus-

trated in Figs. I and 17-19. Parameters of this model appro-

priate for the actual 0GO assembly are listed in Table I.

5.1 Response of the Panels to Acoustic-Path Excitation

The response of the model spacecraft panels to energy

transmitted by the acoustic path can be found through the noise

reduction, plotted in Fig. 14, and the spacecraft response to

an exciting diffuse noise field, plotted in Fig. 16. The mean

square acceleration spectrum of the panels is given by

Sa(4)(f) ]acoustic S (3)(f) S (%)(f)j = p a
S (1)(f) S (1)(f) S (3)(f)

P P P

(161a)
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or, equivalently,

4 4
S S

a = i0 log a NR (161b)
I0 loglo S I S 3 "

P P

To evaluate Eqs. (161), the noise reduction is taken from Fig. 14,

h2=10 -2 and _3=0.I. The spacecraft response to the internalwith

acoustic field is taken from Fig. 16 with h4=i0-2. The predicted

spacecraft response due to energy transmitted by the acoustic path

is plotted in Fig. 27. It is compared to the response due to

mechanical-path energy transmission.

The loss factors _2 and _ are not based on experimental

or theoretical calculations, but are estimated on the basis of

past experience. Thus, the predicted response levels should be

viewed with some uncertainty.

5.2 Response of the Panels to Mechanical-Path Excitation

The response of the model spacecraft panels to energy trans-

mitted by the mechanical path is given by

(2)(f) s (4)(f)
_Sa(4 )(f) ]mechanical Sa aIs (1)(f) :s (1)(f) s (2)(f)

p p a

, (162a)

or, equivalently,

114



s (4) s s (4)
a

I0 log S_ = I0 log S _Ta + Io log _a

p p a

, (162b)

where the shroud response to the acoustic excitation, S (2)/S (I)
a p

is plotted in FiR. 16, and the spacecraft response to mechanical

excitation, Sa(%_/Sa(2) , is plotted in Fig. 26. The predicted

spacecraft-panel response due to energy transmitted by the

mechanical path is plotted in Fig. 27 and can be compared with

the response due to acoustic-path energy transmission. The

acoustic-path response dominates the over-all response of the

model spacecraft panels.

5.3 Discussion of the Predictions

The response predictions in Fig. 27 clearly show that the

acoustic path energy transmission dominates the over-all response

of the 0CO spacecraft panels. The validity of this prediction

depends, of course, on the validity of the model analyzed and

on the validity of the prediction method.

In modeling the actual OG0 assembly, we have made a number

of idealizations, which are discussed in Section 3.1 and 4.1.

We are reasonably confident that these idealizations do not

significantly affect the validity of the model--i.e., they do

not change the response predictions in any octave frequency band

by more than a factor of 3 (5 dB). The structural properties of

the model are listed in Table I. These properties were taken

from drawings of the OGO assembly supplied by NASA and are viewed

as sufficiently accurate.
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The dissipation loss factors are, by far the largest source
of uncertainty in the predictions. These loss factors were

necessarily based on empirical estimates, which may not be accurate

for the 0GO assembly. Before a great deal of confidence can be

placed in the predictions, the dissipation loss factors for the

actual OG0assembly should be found experimentally. Appropriate

experimental methods for determining this parameter are discussed

in Appendix A of this report.

Many of the concepts used in statistical energy analysis have

been supported by experiment. This is particularly true with

regard to the prediction of energy interactions between two
acoustic or structural elements. Experimental support of trans-

mission problems in which many acoustic and structural elements

interact is not as extensive. A set of experiments for a multi-

element spacecraft assembly is outlined in Appendix A. These

experiments would lead to a greater understanding of such problems
and could be used to support the theoretical predictions of this

report.

Finally, it should be pointed out again that statistical

energy analysis leads to predictions of the averase response

levels of an ensemble of structures. Variations from this average

are to be expected and can be appreciable when the number of

modes in a given frequency band is low.
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6. CONCLUSIONS

The study presented in this report provides the necessary

guidelines for analyzing the vibration environment of spacecraft

assemblies. Perhaps the most difficult step in the analysis is

the selection of a model of the assembly in question. If

statistical energy analysis is to be used, modelling of the

assembly is simplified. 0nly gross geometric and structural

properties are required. Small details such as panel boundary

conditions, the exact geometry of the acoustic space, and the

exact configuration of the shroud/ring-frame/mounting-truss

connection are not required.

In this report, we have illustrated our analysis technique

by obtaining the vibratory response of a model of the 0G0

assembly. The extent to which the results are an accurate pre-

diction of the vibratory environment of the actual 0G0 assembly

depends on the accuracy of the model. Because the primary goal

of our study has been to develop a method of analysis rather than

to obtain specific results, the model selected is oversimplified.

We have neglected the contribution of the conical section of the

shroud to the sound transmission. We have not considered the

vibratory response of antennas, solar panels, or particular items

of equipment in the spacecraft. We have considered the space-

craft to be an open array of panels, whereas on at least one 0G0

spacecraft it is a closed array of panels. Flnal!y, we have not

considered the mass-loading effect of instruments connected

directly to the spacecraft panels. Two of the 0G0 spacecraft

panels are heavily loaded with equipment. In spite of having

neglected the above effects, we believe that the predicted

spacecraft panel response is within 5 dB of the response of the

actual 0G0 spacecraft panels. Our results (see Fig. 27) show

that the acoust_cally induced response of the spacecraft panels



is I0 to 25 dB greater than the response caused by mounting-truss

vibrations. Thus, we conclude that the acoustically induced

response of the actual OGOpanels will dominate the total response

of the panels. In addition, we conclude that the acoustic path is

of greater importance for all spacecraft assemblies in which the

spacecraft consists of an array of panels that are supported by

mounting trusses. Spacecraft assemblies that are arrays of beams

supported by a truncated conical structure (e.g., the Mariner)

do not fit into this general class.

Once we have found a model that accurately describes the

spacecraft assembly, the statistical energy analysis procedures

described in this report can be followed. The results obtained,

however, must not be accepted blindly. First, statistical energy

analysis requires an accurate measure of the internal damping of

the structural elements involved. Second, statistical energy

analysis requires that there be many resonant modes, at least two

or three, within each octave band of frequencies. The accuracy
of the results provided by the analysis depends on the extent to

which these two requirements are fulfilled.
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APPENDIX A. EXPERIMENTAL ANALYSIS OF RANDOM LOAD TRANS-

MISSION TO A SHROUD-ENCLOSED SPACECRAFT

In this Appendix, we discuss a number of experiments that

could be performed on a model of the OGO spacecraft-shroud

assembly. These experiments would lead to a greater under-

standing of vibratory energy transmission in such systems.

It is hoped, of course, that their results would support the

theoretical analysis contained in this report. Such experi-

mental support is desirable because many of the concepts used

in the statistical energy analysis of transmission problems

are in their early stages of development. We feel that the

theoretical analysis gives a good picture of the transmission

processes, but there always remain points that are difficult

to resolve by theoretical analysis alone. The experience and

techniques that would be developed by a set of experiments like

those described in this Appendix would be invaluable for further

applications of statistical energy analysis to the transmission

of random loads in spacecraft assemblies.

In the following sections, we present some general guide-

lines and considerations for the design of the experiments.

We also discuss scaling laws for acoustic and structural

vibration experiments. Then, we outline specific experiments

that are appropriate for studying a model of the OGO spacecraft

assembly.

AI.I General Considerations in the Design of Experiments

Experiments on structural configurations that are exposed

to random acoustic environments are carried on for a wide variety

of purposes. For example, environmental testing includes experi-
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ments that are designed to "proof test" a structure In such tests,

the structure is subjected to an anticlpa_d environment and one
determines whether or not its structural integrity and/or its

operational behavior are affected by the environment. Tests may
also be run at lower levels of excitation, to determine antici-

pated response at locations where sensitive equipment may be
mounted. Vibration and acoustic specifications may be generated

for particular equipments by such tests.

A second major class of experiments is designed merely to

gather data on structural and acoustic parameters. These para-

meters are usually obtained experimentally, either because they
cannot be conveniently calculated or because there is some wish
to correlate a calculation with an experimental study. The exper-

iments may be designed to gather only a few bits of structural
information or they may be designed to define almost all of the

major parameters of the system. In either case, the result of the

experiment is a list of data that is to be used in theoretical

analyses for the prediction of some other more complex bit of
information about structural behavior. Many of the experiments

that we describe here fall within this category. In fact, we pro-

pose measurements of many structural parameters that can be cal-
culated from theoretical notions. In this way, vibration-

transmission predictions that use the concepts of statistical

energy analysis can be based upon as much experimentally derived

information as possible.

There are also experiments that one might call "research

tests." Such experiments are used to test theoretical calcula-

tions of modal density, response ratios, damping, or other para-
meters. They may also be used to test theoretical assumptions

about the way that the structure is behaving in various segments,

frequency ranges_ or modes of motion. Most of the proposed
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experiments fall in this category.

The spacecraft assembly model that we analyze is shown in

Fig. i. The detailed structure of this model is shown in Figs. 4,
5, and 6, and is discussed in Chapters 3 and _ of the text. The

experimental model should be designed to be as flexible in use as
possible. It should be easy to dismantle, and the addition of

structural damping and acoustic absorption should be relatively
simple. We do not feel that there are any conflicts between

these requirements and the fundamental necessity for the model

to be representable by the dynamical considerations outlined in

Chapters 3 and 4.

To gain flexibility and to reduce the expense of an experi-

ment, it is often desirable to construct a scale model of the

spacecraft assembly. Appropriate scaling laws and the problems
involved in scaling are discussed in the Section AI.2 of this

Appendix.

AI.2 Scaling of Acoustic- and Structural-Vibration Experiments

A logical approach in designing scale models is through di-

mensional analysis. Using this approach, we must first determine

those parameters that describe the actual spacecraft assembly and

control the response spectra of the individual elements. Then,

a set of independent dimensionless groups can be formed by

dimensional analysis. In scaling, it is necessary only to keep

each dimensionless group constant.

Earlier in this report, we proposed that the mu!timodal
response spectrum of each element in the acoustic and mechanical

transmission path can be formulated in terms of the diffuse-field
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excitation spectrum and bandwidth and the gross properties of the

elements. More specifically, we proposed that

IQ Acoustic spaces in the assembly are described sufficiently

by their volumes, by the density and speed of sound of the

contained acoustic media, and by their dissipation loss

factors.

o Panel structures, the shroud and spacecraft, are suffi-

ciently described by their geometry, including curvature,

and the location of ribs and baffles, their surface den-

sity, bending- and longitudinal-wave speed, and dissipa-

tion loss factors.

. Beamlike structures, the ring frame, and the mounting

trusses, are sufficiently described by geometry, includ-

ing length, curvature, and the geometry of their connec-

tion to other elements, their lineal density, bending-,

longitudinal-, and torsional-wave speeds, and dissipation

loss factors.

The mean square response velocity in a frequency band A of each

element in the assembly can be expressed as a general function of

these parameters,

(i) (i) (i) (i)(i) a = F Spa , A, f, V i _i Po Ps P_ Co, c_ cbS v , , , , , ,

ct(i)' nil (A1. i)

(i)
where S v is the velocity spectrum of the ith element, Sp is the

excitation sound-pressure spectrum; f and A are the band center

frequency and bandwidth of the excitation; F[ ] represents a
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functional relationship; the Vi's are the acoustic space volumes;

the $i's describe the over all geometry of the structural elements;

po is the density of the media within the acoustic spaces; the
ps(i " (i),)'s are surface densities; the p_ s are lineal densities;

Co is the acoustic speed of sound; the c_ (i) are longitudinal-wave

speeds; the cb(i)'s are bending-wave speeds; the ct(i)'s are tor-

sional-wave speeds; and, finally, the _i's are internal dissipa-
tion loss factors.

This general functional relationship can be simplified through
the introduction of dimensionless groups. These groups are found

through dimensional analysis:

Co 2 po2Co 4
A ) <Vif3 $if_ , c$(i)Co )<Tj

C0 • PoCo • PoCo •

(A1.2)

Using the above result• it is possible to design scale models that

simulate the behavior of the full scale assembly. It is necessary

only to keep each dimensionless group constant in the scaling.

For example• if we wish to construct a one-half scale model• then

it is necessary to increase the test frequencies by a factor of 2,

since the acoustic speed of sound cannot be easily changed. The

remaining parameters must be scsled according to the dimensionless

groups. If the acoustic speed of sound co is held constant, the

longitudinal-• bending-• and torsional-wave speeds must also be

kept constant. In the important case in which the structures are

homogeneous• these wavespeeds can be held constant by reducing

the bending radius of gyration by the same factor that the over

all structure is scaled. No change of material is necessary.
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The scaling of nonhomogeneous panels or beams by geometrically

similar nonhomogeneous structures does not require a change in

material. Modeling of nonhomogeneous panels by homogeneous panels,

however, usually requires a change in material, to keep all dimen-

sionless groups constant.

The problems involved in scaling are not the result of mater-

ial requirements, since these usually need not be changed. Problems

do arise, however, because of the increased test frequencies.

Measurement problems occur because of increased accelerometer

loading. In many cases, this particular problem can be solved by

use of available lightweight accelerometers and theoretical

corrections to the measurements. A more serious problem occurs

because of air absorption. Our dimensionless groups require that

the internal acoustic-space dissipation loss factor remain constant

as the required test frequencies are increased. At very high fre-

quencies, absorption in the acoustic space makes this impossible.

Fortunately, however, the internal acoustic-space dissipation loss

factor in spacecraft assemblies is high because of the presence of

a shroud liner. This allows us to reduce the dissipation loss

factor in the acoustic space of the scale model by removing part

of the liner.

The structural dissipation loss factors also must be held

constant as the required test frequencies are increased. This

requirement imposes few problems, however, since these loss factors

are not strongly dependent on frequency. The loss factors of the

scale models can be increased or decreased to correspond to those

in the actual structures.

In our theoretical predictions and in the dimensional analy-

sis, we have assumed that the exact details of the structural and

acoustic elements of the spacecraft assembly are unimportant in
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determining the response. This assumption can be supported by

study of a scale model that satisfies the above requirements. The
study would involve varying the small details of the model and

finding the effect on the response. If no effect were found,

the assumption would be supported. If an effect were found, how-

ever, correspondence between the scale model and the actual space-
craft assembly results may not exist. In such a case, it would be

necessary to include these small details of the assembly in the
dimensional analysis.

As a practical limit, scale-model test frequencies should not

exceed 12 kcps. The frequency range of interest in the actual 0GO

assembly lies below 5 kcps. Thus, a one-half scale model can be

used without encountering serious scaling difficulties. A one-

third scale model could be used over most of the frequency range

of interest. Serious scaling problems would exist only at the
highest frequencies.

AI.3 Outline of Experiments on a Model of the 0GO Assembly

In the more-detailed discussions to follow, the mechanical

and acoustic transmission paths are treated separately as they were

in the theoretical analyses. For each of the major acoustic and
structural path elements, we describe experiments to determine

those parameters that are most important in establishing the energy

transfer and storage. For each element, we wish to study modal

density, damping, and coupling loss factors. We also describe

energy transmission experiments that are performed on various seg-

ments of the acoustic and vibrational path. Experiments on

transmission of energy in the vibrational and acoustical paths,

separately and together, are described. In order to study the

individual elements and segments of the transmission path, a high
degree of flexibility in the spacecraft model construction is

A-7



necessary. This flexibility would not be available to us if we

were studying an actual spacecraft assembly. The essential differ-

ence is not in the complexity of the system, but in the degree of

ease with which one can dismantle the various segments of the model

and then reconnect them and have the structure remain in its initial

state. Let us begin our discussion by enumerating the experimental

studies of the acoustic transmission path.

AI.3.1 Experimental Studies of the Acoustic Transmission Path

Element No. I in the acoustic transmission path is the exter-

ior acoustic space and the sound field within it that excites the

spacecraft shroud. Two major forms of the exterior sound field

should be investigated. The simplest to generate experimentally

and to correlate with analysis is the diffuse reverberant field.

A diffuse sound field can be generated by exciting a large, rea-

sonably "hard" room with a band of noise. Almost any large room

is suitable for this purpose, provided that unusually large acous-

tic absorption (absorption coefficients greater than 30%, say,

over major parts of the wall area) is not present.

Experiment I. A check on the diffusion of the sound field
can be made by making microphone scans through the space to

see whether the sound-pressure levels remain uniform on the

average (variations less than +l dB) as one moves about the

space. Strong nonuniformities-could result from excessive

acoustic absorption in one part of the contained volume or

perhaps a peculiar modal distribution. The existence of such
effects indicates that the field is nondiffuse. The diffuse-

ness of the field can be increased to some extent by the

proper addition of reflectors and/or absorption material.

There are cases where a nondiffuse directive field may be

more representative of the service environment of the vehicle

than is a purely diffuse sound field. One goal of our experiments

is to test possible differences in the shroud response and in its

sound transmission under these two types of incident sound field.
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A directive field can be created in a room by increasing the

absorption in the room so that the "direct field" of the sound

source extends out, perhaps, a distance of i0 to 15 ft from the

sound projector (s). If the shroud is placed in this field, it

will experience relatively more acoustic energy incident from the

direction of the source.

Experiment 2. The region around the source (s) in which a
directive field exists can be found by a microphone scan

throughout the room. The average levels will be highest
near the source and will fall off until they reach the level

of the reverberant field. If the direct field is not suffi-

ciently strong, then the absorption of the room must be
increased.

Item No. 2 in the acoustic path is the shroud model. The

important parameters in the analytical prediction of the acoustic

energy interactions for this model are the modal density, the

acoustic coupling loss factor, and the dissipation loss factor.

These parameters can be evaluated by mechanical and acoustic tests

on the shroud model.

Experiment 3. The modal density of the shroud model can be
found at low frequencies by counting peaks in the response

as the sinusoidal exciting frequency is altered. This tech-

nique is useful until the bandwidth of the individual

resonant modes becomes comparable to the average frequency

spacing between modes. For a model of the 0G0 shroud, the

modal density is sufficiently high that this technique will

be useful only up to approximately 40 Hz. A mode count
cannot be carried out above this freq---uency; however, the

technique of slowly varying the sinusoidal exciting frequency

and studying the response can be used to discover any un-
usual modal distribution at low frequencies in which modes

would bunch together in certain frequency ranges and be ab-

sent in other ranges. If an unusual distribution were
found, it would be worthwhile to change rib positions and

boundary conditions to find their effect on the distribution.

The shroud-to-acoustlc-space coupling loss factor should be

found for both the AF and AS modal group. Since the acoustically
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slow modes radiate from the ribs and ends of the cylinder, their

contribution to the total radiation can be eliminated by removing

the ribs and baffles from the ends of the shroud model.

Experiment 4. The AF mode coupling loss factor is found by

removing the ribs and baffles and using a mechanical shaker

to excite the shroud in a frequency band. The net power
radiated to the acoustic field from the unbaffled shroud is

_rad = 2_q2AF, I n2AF( E2n2--tot ElnI ) '

where E 1 and E2, the total time-average energy of the

acoustic space and the shroud, can be measured by a multiply-

ing the total mass by the space-time mean square velocity;

_2tot and n I can be predicted theoretically. The net power

radiated to the acoustic field equals that dissipated:

_rad = _qlEl '

where E 1 and _I are known by measurement and previous exper-

iment. The coupling loss factor h2AF, I can be found through

the above equations.

Experiment 5. The AS mode coupling loss factor can now be

found by executing a similar procedure with the ribs and

baffles in place. In this case, the net power radiated
from the baffled shroud is

_rad = _q2AF, I n2AF ( E2n2---tot nIE1)

E 2 E 1

where only hAS,I and Nrad are unknown. Nrad is found

through _i and E 1 so that _2AS, I can be found. The dissi-
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pation loss factors are measured by studies of the vibration
decay rate when the excitation is removed.

Experiment 6. To measure the AF mode and AS mode coupling

loss factor, a mechanical shaker is used to excite the

ribbed, ____ shroud in frequency bands, if the power

input from the shaker is stopped, the decay rate of shroud

energy will be equal to the power radiated and dissipated.

dE2 < E__2_2 El)- _ = _ (_2AFn2AF + _2AS,In2AS ) nto t n I

E 2

+ _ (q2AFn2AF + q2ASn2AS ) nt---ot

All parameters in this equation can be measured or have been

found in previous experiments, except (_2AFn2AF + _2ASn2AS ).

If we assume that the loss factors are equal (this assumption

cannot be easily checked), then _2AF and _2AS are given by

the above equation.

These experiments complete the study of the parameters con-

trolling the acoustic acceptance and radiation properties of the

shroud. A similar set of experiments should be conducted on the

spacecraft panel model.

The important properties of the interior volume (Element 3),

for our study, are its acoustical absorption and its geometry.

The absorption is measured by making decay rate measurements of

the sound pressure in frequency bands, taking into account the

loss calculations for the sound that is transmitted outward

through the shroud into the surrounding space.

Experiment 7. To measure the interior acoustic space ab-

sorption, excite the interior space to its steady-state

sound-pressure level. Then, stop the excitation. The decay
rate will be equal to the power dissipated in the interior

and exterior acoustic spaces plus the power dissipated in
the shroud.
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dE3 (E2)
dt - _IEI + e(_2AFn2AF + _2ASn2AS) _tot + e_3E3

In this equation, only _3 is unknown. The remaining para-

meters have been evaluated in other experiments or can be
measured.

The geometry of the acoustic space will determine the "diffusion"

of the sound field within. Diffusion can be measured by conduct-

ing Experiment 1 for the interior acoustic space.

The second class of experiments is to be performed on various

portions of the acoustic transmission path. First, the acoustic

acceptance of the shroud should be studied. This is done by mak-

ing the absorption of the interior space as low as possible and

exciting the shroud with an external sound field.

Experiment 8. Remove all acoustically absorptive material
from the interior acoustic space. Excite the shroud model

with a diffuse external sound field, and measure the space-

time mean square vibratory response of the shroud by sampling

the vibration levels at many locations. Then, increase the

damping and again measure the vibration levels. Repeat the
above procedure with a directive field.

Next, the noise reduction by the shroud should be studied.

From the discussion in Chapter 3, it is clear that we should find

the relative amount of sound transmitted through the shroud by

forced-wave (nonresonant) and resonant response. Forced-wave

transmission is independent of structural damping; therefore, a

way to find the relative importance of forced-wave transmission

is to increase the shroud damping. Any increase in noise reduc-

tion must be due to the decrease in resonant transmission.

Experiment 9. Add an absorptive liner to the interior

acoustic space and measure the resulting dissipation loss

factor _3" Then establish an external diffuse sound field
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and measure the noise reduction. Repeat the experiment for

a directive sound field. Add a large amount of damping to

the shroud, and repeat the above two measurements. Change

the interior acoustic-space absorption and repeat all of the
above measurements.

Finally, the complete acoustic transmission path should be

studied. Energy transmitted by the mechanical path can be elimi-

nated by using an extremely soft mechanical suspension for the

spacecraft.

Experiment I0. With the spacecraft model and shroud liner
in place, excite the shroud with a diffuse sound field and

measure the shroud response, the NR, and the spacecraft
response. Repeat these measurements for a directive sound

field. Change various parameters and study the changes in
response.

This completes the study of the acoustic path.

cuss a study of the mechanical path.

Next, we dis-

A1.3.2 Experimental Study of the Mechanical Path

In this section, we outline a number of experiments that

should be performed on the mechanical-transmission path elements.

These experiments have been divided into two classes. First,

experiments to determine the modal densities and loss factors of

the individual elements are described. Second, experiments on

various portions of the mechanical-transmission path are studied.

First the modal densities of the ring frame and mounting

trusses should be studied. Densities of both torsional and bend-

ing waves should be found by exciting the elements with a moment

and a force.

Experiment ii. With the shroud and mounting trusses dis-
connected, excite the ring frame with a sinusoidal force

of slowly varying frequency. _ere possible, count the

number of resonances in the response. Connect the shroud
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and trusses, but damp them heavily, and repeat the mode
count.

Experiment 12. Repeat Experiment II for the mounting trusses
applying a force in the two principle directions of flexure.

Experiment 13. Repeat Experiment II for the mounting trusses,
with a moment excitation.

The above experiments are complicated by the interaction of

torsional and bending modes and by the interaction of modes of one

structure with another.

The resonant vibration of the spacecraft shroud forms the

random environment of the ring frame. In the theoretical analysis,

we assumed that the coupling loss factor from the ring frame to

the shroud would be much larger than the ring-frame dissipation

loss factor or its coupling loss factor to the mounting truss.

This hypothesis can be tested by exciting the ring frame with bands

of noise and observing its decay rate.

Experiment 14. Excite the ring frame with a band of noise

and measure the resulting vibration levels in the shroud,

ring frame, and mounting trusses. The coupling loss factors

between these elements and the ring frame can be expressed

in terms of these levels and the dissipation loss factors

of the shroud and mounting trusses:

and

f E 5

_5 2n5
• n 5

E 2

n 2 _ = _2 E2

f E 5

_5 6n5
• n 5 n 6 = _6 E6

Experiment 15. Excite the ring frame with a band of noise
and stop the excitation. The decay rate of the ring frame

energy is given by
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dE5 E5 E2 E5 E6
dt = q5,2 < n5 n2) + q5,6n5 < n 5 n6) + _5 E5

All parameters in this equation, except qS' are knownor can be measured.

The above experiments should be repeated for the mounting
trusses, to find the coupling loss factor between the trusses

and the ring frame and between the trusses and the spacecraft
panel. In addition, the flexural- and torsional-vibration levels

of the trusses should be measured when the ring frame is excited

by noise. This measurement can be correlated with the equal

modal-energy hypothesis made in Chapter 4.

Finally, we outline a set of experiments to study portions

of the mechanical path. To eliminate the flow of energy in the

acoustic path, the shroud can be removed and the ring frame ex-

cited directly by a mechanical shaker. The experimental results

can then be determined in terms of the ring-frame energy.

Experiment 16. With the spacecraft and mounting trusses

in place, excite the ring frame to a steady-state level.

Then measure the resulting energy levels in the trusses
and the spacecraft panels.

Since energy is transmitted by both resonant and nonresonant

motion of the mounting trusses, Experiment 16 should be repeated

with the trusses heavily damped. It would also be interesting to

alter the structural configuration and find the effect on the

response levels.

These brief discussions indicate the number and type of exper-

iments that can be undertaken on the OGO model. The experiments

take full advantage of the model's flexibility and its usefulness

in allowing fairly complete calculations on the system. We strongly
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recommend that as many as possible of these measurements be carried

out in order to develop the most complete picture for the system.
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TABLE I. Parameter values for a model of the OGO spacecraft

assembly.

A 2 = 276 ft 2

_2 = 195 in.

_2a = 24 in.

_2b = 30 in.

f2c = 34 in.

_2d = 42 in.

a 2 = 32.5 in.

h = O. 13 in.

z 2 = O. 0366 in.

fr = 650 Hz

fc = 5200 Hz

M 2 = 1.41 x lO 5 g

= o.oo113

cz(2) = II 000 ft/sec

v =8
C

_s (2) = 1.225 lbs/ft 2

0o

co = llO0 ft/sec

PoCo

V 3 = 374 ft 3

3

A4

= 2.56 x 105 cm 2

= 495 cm

= 61 cm base of shroud to first rib

= 76 cm first to second rib

= 86.5 cm second to third rib

= 107 cm third to fourth rib

= 82.5 cm

= 0.33 cm

= 0.093 cm

= 3.35 x 105 cm/sec

= 0.55 g/cm 2

= 1.2 x 10 -3 cm/sec

= 3.4 x l0 LL cm/sec

= 41 dyn-sec/cm 3

= 1.07 x 107 cm 3

0. I (values of 0. i and 0.3 are used in the calculations)

= 56.5 ft 2 = 5.25 x lO 4 cm 2 (all four panels

included)



TABLE I. (con't)

_4 = 0.271 in.

c_ (4) = 17 000 ft/sec

Ly = 69 in.

Lx = 29.5 in.

(4) = o.765 lb/ft 2
m

M4

fc = 500 Hz

a5

t5

2w 5

_5 = 204 in.

c_ (5) = 17 000 ft/sec

(5)
P_

M5

a6

t 6

2w 6

_6

(6)
c_

(6)
P_

= 0.688 cm

= 5.17 x 105 cm/sec

= 175 cm (length of the panel in

vertical direction)

= 75 cm (length of one panel in

vertical direction)

= 0.373 g/cm 2

h
= 1.96 x I0

= 5 cm

= 0.64 cm

= 5 cm

= 518 cm

= 5.17 x lO 5 cm/sec

= 25.9 g/cm

= 1.34 x lO 4 g

= 8.9 cm

= 0.152 cm

= 7.6 cm

= 200 cm (length of all four

trusses)

= 5 x lO 5 cm/sec

= 10.4 g/cm

= 2.08 x 103g(mass of all four

trusses )


